Monotone Finite-Difference Scheme That Preserves the High Accuracy in The Regions of Shock Influence

 
PIIS086956520002921-6-1
DOI10.31857/S086956520002921-6
Publication type Article
Status Published
Authors
Occupation: Junior Research Fellow
Affiliation: Lavrentyev Institute of Hydrodynamics of Siberian Branch of Russian Academy of Sciences
Address: Russian Federation, Novosibirsk
Occupation: Senior Research Fellow
Affiliation: Lavrentyev Institute of Hydrodynamics of Siberian Branch of Russian Academy of Sciences
Address: Russian Federation, Novosibirsk
Occupation: Professor
Affiliation: Lavrentyev Institute of Hydrodynamics of Siberian Branch of Russian Academy of Sciences
Address: Russian Federation, Novosibirsk
Journal nameDoklady Akademii nauk
EditionVolume 482 Issue 6
Pages639-643
Abstract

  

Keywords
Received06.12.2018
Publication date13.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1389

Readers community rating: votes 0

1. Godunov S.K. Raznostnyj metod chislennogo rascheta razryvnykh reshenij uravnenij gidrodinamiki // Mat. sb. 1959. T. 47. № 3. S. 271—306.

2. Van Leer B. Toward the ultimate conservative dierence scheme. V. A secondorder sequel to Godunov's method // J. Comput. Phys. 1979. V. 32. № 1. P. 101—136.

3. Harten A. High resolution schemes for hyperbolic conservation laws // J. Comput. Phys. 1983. V. 49. P. 357—393.

4. Nessyahu H., Tadmor E. Non-oscillatory Central Dierencing for Hyperbolic Conservation Laws // J. Comput. Phys. 1990. V. 87. N. 2. P. 408—463.

5. Jiang G.S., Shu C.W. Ecient implementation of weighted ENO schemes // J. Comput. Phys. 1996. V. 126. P. 202—228.

6. Goloviznin V.M., Zajtsev M.A., Karabasov S.A., Korotkin I.A. Novye algoritmy vychislitel'noj gidrodinamiki dlya mnogoprotsessornykh vychislitel'nykh kompleksov // M.: Izd. MGU, 2013.

7. Ostapenko V.V. O skhodimosti raznostnykh skhem za frontom nestatsionarnoj udarnoj volny // Zh. vychisl. matem. i matem. fiz. 1997. T. 37. № 10. S. 1201—1212.

8. Casper J., Carpenter M.H. Computational consideration for the simulation of shock-induced sound // SIAM J. Sci. Comput. 1998. V. 19. ќ 1. P. 813—828.

9. Ostapenko V.V. O postroenii raznostnykh skhem povyshennoj tochnosti dlya skvoznogo rascheta nestatsionarnykh udarnykh voln // Zh. vychisl. matem. i matem. fiz. 2000. T. 40. № 12. S. 18571874.

10. Kovyrkina O.A., Ostapenko V.V.O skhodimosti raznostnykh skhem skvoznogo schyota // Dokl. AN. 2010. T. 433. № 5. S. 599—603.

11. Kovyrkina O.A., Ostapenko V.V. O real'noj tochnosti raznostnykh skhem skvoznogo scheta // Matem. modelir. 2013. T. 25. № 9. S. 63—74.

12. Mikhajlov O poryadke skhodimosti raznostnykh skhem WENO za frontom udarnoj volny // Matem. modelir. 2015. T. 27. № 2. S. 129—138.

13. Ostapenko V.V. O konechno-raznostnoj approksimatsii uslovij Gyugonio na fronte udarnoj volny, rasprostranyayuschejsya s peremennoj skorost'yu // Zh. vychisl. matem. i matem. fiz. 1998. T. 38. № 8. S. 1355—1367.

14. Kovyrkina O.A., Ostapenko V.V. O postroenii kombinirovannykh raznostnykh skhem povyshennoj tochnosti // Dokl. AN. 2018. T. 478. № 5. S. 517—522.

15. Rusanov V.V. Raznostnye skhemy tret'ego poryadka tochnosti dlya skvoznogo schyota razryvnykh reshenij // Dokl. AN SSSR. 1968. T. 180. № 6. S. 1303—1305.

Система Orphus

Loading...
Up