Confidence Sets for Spectral Projectros of Covariance Matrices

Publication type Article
Status Published
National Research University “Higher School of Economics”
Institute for Information Transmission Problems, RAS
Address: Russian Federation, Moscow
Lomonosov Moscow State University
National Research University “Higher School of Economics”
Address: Russian Federation, Moscow
Weierstrass Institute
Skolkovo Institute of Science and Technology
Institute for Information Transmission Problems of the Russian Academy of Sciences
Address: Russian Federation, Moscow
Journal nameDoklady Akademii nauk
EditionVolume 482 Issue 6


Publication date13.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1432

Readers community rating: votes 0

1. J. Tropp, User-friendly tail bounds for sums of random matrices, Found. Comput. Math., 12(4), (2012), 389Ts434.

2. R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, In Compressed sensing, 210Ts268, Cambridge Univ. Press, Cambridge.

3. R. van Handel, On the spectral norm of gaussian random matrices, ArXiv:1502.05003, (2015).

4. V. Koltchinskii, K. Lounici, Concentration inequalities and moment bounds for sample covariance operators, ArXiv:1405.2468, (2015).

5. V. Koltchinskii, K. Lounici, Normal approximation and concentration of spectral projectors of sample covariance, ArXiv:1504.07333, (2015).

6. V. Spokoiny, M. Zhilova, Bootstrap confidence sets under model misspecification, Ann. Statist., 43(6), (2015), 2653Ts2675.

7. V. Chernozhukov, D. Chetverikov, D., K. Kato, Gaussian approximations and multiplier bootstrap for maxima of sums of highdimensional random vectors, Ann. Statist., 41 (6), (2013), 2786Ts2819.

8. V. Chernozhukov, D. Chetverikov, D., K. Kato, Central Limit Theorems and Bootstrap in High Dimensions, arXiv:1412.3661, (2014).

9. A. Naumov, V. Spokoiny, V. Ulyanov, Bootstrap confidence sets for spectral projectors of sample covariances. arXiv:1703.00871, (2017).

10. F. G?otze, A. Naumov, V. Spokoiny, V. Ulyanov, Large ball probabilities, Gaussian comparison and anti-concentration. arXiv:1708.08663v2, (2018).

Система Orphus