Learning radial basis function networks with the trust region method for boundary problems

 
PIIS000523100001489-1-1
DOI10.31857/S000523100001489-1
Publication type Article
Status Published
Authors
Affiliation: Penza State University
Address: Russian Federation, Penza
Affiliation: Penza State University
Address: Russian Federation, Penza
Affiliation: Moscow State Technical University of Civil Aviation
Address: Russian Federation, Moscow
Journal nameAvtomatika i Telemekhanika
EditionIssue 9
Pages95-105
Abstract

  

Keywords
Received09.10.2018
Publication date11.10.2018
Number of characters478
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 757

Readers community rating: votes 0

1. Tolstykh A.I., Shirobokov D.A. Bessetochnyj metod na osnove radial'nykh bazisnykh funktsij // Zhurn. vychislit. matem. i matem. fiziki. 2005. T. 45. № 8. S. 1498–1505.

2. Liu G.R. Mesh free methods: moving beyond the finite element method. CRC Press, 2003.

3. Kansa E.J. Motivation for Using Radial Basis Function to Solve PDEs // [Ehlektronnyj resurs]. http://www.cityu.edu.hk/rbf-pde/files/overview-pdf.pdf

4. Buhmann M.D. Radial Basis Functions: Theory and Implementations. Cambridge University Press, 2004.

5. Fasshauer G.E. Meshfree Approximation Methods with MATLAB. World Scientific Publishing Company, 2007.

6. Chen W., Fu Z.J. Recent Advances in Radial Basis Function Collocation Methods. Springer, 2014.

7. Fornberg B., Flyer N. Solving PDEs with Radial Basis Functions // Acta Numerica. 2015. V. 4. P. 215–258.

8. Jianyu L., Siwei L., Yingjian Q., Yaping H. Numerical Solution of Differential Equations by Radial Basis Function Neural Networks // Proc. Int. Joint Conf. on Neural Networks. 2002. V. 1. P. 773–777.

9. Mai-Duy N., Tran-Cong T. Solving High Order Ordinary Differential Equations with Radial Basis Function Networks // Int. J. Numerical Methods Engin. 2005. V. 62. P. 824–852.

10. Sarra S. Adaptive Radial Basis Function Methods for Time Dependent Partial Differential Equations // Appl. Numer. Math. 2005. V. 54. No. 1. P. 79–94.

11. Chen H., Kong L., Leng W. Numerical Solution of PDEs via Integrated Radial Basis Function Networks with Adaptive Training Algorithm // Appl. Soft Comput. 2011. V. 11. No. 1. P. 855–860.

12. Kumar M., Yadav N. Multilayer Perceptrons and Radial Basis Function Neural Network Methods for the Solution of Differential Equations: A Survey // Comput. Math. Appl. 2011. V. 62. P. 3796–3811.

13. Yadav N., Yadav A., Kumar M. An Introduction to Neural Network Methods for Differential Equations. Springer, 2015.

14. Tarkhov D.A. Nejrosetevye modeli i algoritmy. Spravochnik. M.: Radiotekhnika, 2014.

15. Gorbachenko V.I., Artyukhina E.V. Bessetochnye metody i ikh realizatsiya na radial'no-bazisnykh nejronnykh setyakh // Nejrokomp'yutery: razrabotka, primenenie. 2010. № 11. S. 4–10.

16. Gorbachenko V.I., Zhukov M.V. Solving Boundary Value Problems of Mathematical Physics Using Radial Basis Function Networks // Comput. Math. Math. Phys. 2017. V. 57. No. 1. P. 145–155.

17. Gudfellou Ya., Bendzhio I., Kurvill' A. Glubokoe obuchenie. M.: DMK Press, 2018.

18. Jia W., Zhao D., Shen T., Su C., Hu C., Zhao Y. A New Optimized GA-RBF Neural Network Algorithm // Comput. Intelligence Neurosci. 2014. Article ID 982045.

19. Gill F., Myurrej U., Rajt M. Prakticheskaya optimizatsiya. M.: Mir, 1985.

20. Sutskever I., Martens J., Dahl G., Hinton G. On the Importance of Initialization and Momentum in Deep Learning // Proc. 30th Int. Conf. on Machine Learning. 2013. V. 28. P. 1139–1147.

21. Alkezuini M.M., Gorbachenko V.I. Obuchenie setej radial'nykh bazisnykh funktsij metodom Nesterova pri reshenii kraevykh zadach matematicheskoj fiziki // Mater. XII Mezhdunar. nauch.-tekhn. konf. Analiticheskie i chislennye metody modelirovaniya estestvennonauchnykh i sotsial'nykh problem. Penza: Izd-vo PGU, 2017. C. 171–175.

22. Fletcher R., Reeves C.M. Function Minimization by Conjugate Gradients // Comput. J. 1964. V. 7. P. 149–154.

23. Polak E., Ribi´ere G. Note sur la convergence de m´ethodes de directions conjugu´ees // Revue fran¸caise d’informatique et de recherche op´erationnelle, s´erie rouge. 1969. V. 3. No. 1. P. 35–43.

24. Zhang L., Li K., He H., Irwin G.W. A New Discrete-Continuous Algorithm for Radial Basis Function Networks Construction // IEEE Trans. Neural Networks Learning Syst. 2013. V. 24. No. 11. P. 1785–1798.

25. Xie T., Yu H., Hewlett J., Rozycki P., Wilamowski B. Fast and Efficient SecondOrder Method for Training Radial Basis Function Networks / // IEEE Trans. Neural Networks Learning Syst. 2012. V. 23. No. 4. P. 609–619.

26. Markopoulos A.P., Georgiopoulos S., Manolakos D.E. On the Use of Back Propagation and Radial Basis Function Neural Networks in Surface Roughness Prediction // J. Indust. Engin. Int. 2016. V. 12. No. 3. P. 389–400.

27. Zhang L., Li K., Wang W. An Improved Conjugate Gradient Algorithm for Radial Basis Function (RBF) Networks Modelling // Proc. 2012 UKACC Int. Conf. on Control. P. 19–23.

28. Sadeghi M., Pashaie M., Jafarian A. RBF Neural Networks Based on BFGS Optimization Method for Solving Integral Equations // Adv. Appl. Math. Biosci. 2016. V. 7. No. 1. P. 1–22.

29. Conn A.R., Gould N.I.M., Toint P.L. Trust-Region Methods. MPS-SIAM, 1987.

30. Wild S.M. Regis R.G., Shoemaker C.A. ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions // SIAM J. Scientific Comput. 2008. V. 30. No. 6. P. 3197–3219.

31. Bernal F. Trust-Region Methods for Nonlinear Elliptic Equations with Radial Basis Functions // Comput. Math. Appl. 2016. V. 72. No. 7. P. 1743–1763.

32. Gorbachenko V.I., Zhukov M.V. Obuchenie setej radial'nykh bazisnykh funktsij metodom doveritel'nykh oblastej dlya resheniya uravneniya Puassona // Informats. tekhnologii. 2013. № 9. S. 65–70.

33. Brink Kh., Richards Dzh., Feverolf M. Mashinnoe obuchenie. SPb.: Piter, 2017.

34. Staihaug T. The Conjugate Gradient Method and Trust Region in Large Scale Optimization // SIAM J. Numerical Analysis. 1983. V. 20. No. 3. P. 626–637.

35. Uotkins D. Osnovy matrichnykh vychislenij. M.: Binom, 2012.

Система Orphus

Loading...
Up