Estimating the probability of a class at a point by the approximation of one discriminant function

 
PIIS000523100001446-4-1
DOI10.31857/S000523100001446-4
Publication type Article
Status Published
Authors
Affiliation: Institute for Systems Analysis of Russian Academy of Sciences (ISA RAS)
Address: Russian Federation, Moscow
Journal nameAvtomatika i Telemekhanika
EditionIssue 9
Pages46-58
Abstract

  

Keywords
Received05.10.2018
Publication date11.10.2018
Number of characters658
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 563

Readers community rating: votes 0

1. Anderson T.W. An Introduction to Multivariate Statistical Analysis. 3rd Ed. N.Y.: John Wiley & Sons, Inc. 2003.

2. Tsypkin Ya.Z., Kel'mans G.K. Adaptivnyj bajesov podkhod // Probl. peredachi informatsii. 1970. T. 6. Vyp. 1. S. 52–59.

3. Zenkov V.V. Approksimatsiya diskriminantnykh funktsij v okrestnosti nulevykh znachenij // Izv. AN SSSR. Tekhnich. kibernetika. 1973. № 2. S. 152–156.

4. Zenkov V.V. Using Weighted Least Squares to Approximate the Discriminant Function with a Cylindrical Surface in Classification Problems // Autom. Remote Control. 2017. V. 78. No. 9. P. 1662–1673.

5. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd Ed. Berlin: Springer, 2009. https://www.twirpx.com/file/648724/

6. Niculescu-Mizil A., Caruana R. Predicting Good Probabilities with Supervised Learning // Proc. 22nd Int. Conf. on Machine Learning. ICML’05. Bonn, Germany. August 07–11, 2005. P. 625–632. http://www.cs.cornell.edu/˜alexn/papers/calibration.icml05.crc.rev3.pdf

7. Bella A., Ferri C., Hern´andez-Orallo J., Ram´ırez-Quintana M. Calibration of Machine Learning Models // Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. IDI. 2010. P. 19. http://users.dsic.upv.es/˜flip/papers/BFHRHandbook2010.pdf

8. Zenkov V.V. Machine learning. A method of approximation of discriminant functions and two methods of estimation of a posterior probabilities of classes in the problem of classification // Proc. 10th Int. Conf. “Management of Large-Scale System Development” (MLSD’2017, 2–4 Oct. 2017) IEEE Conf. P. 1–4. http://ieeexplore.ieee.org/document/8109715/

9. Vorontsov K.V. Matematicheskie metody obucheniya po pretsedentam (teoriya obucheniya mashin). http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf

10. Merkov A.B. Raspoznavanie obrazov. Vvedenie v metody statisticheskogo obucheniya. M.: URSS, 2011. http://www.recognition.mccme.ru/pub/RecognitionLab.html/slbook.pdf

11. Anufriev I.E., Smirnov A.B., Smirnova E.N. MATLAB 7. SPb.: BKhV-Peterburg, 2005. http://fileskachat.com/file/31353_4197b1d0a54318bac8271e5daca525b0.html

12. Zenkov V.V. Programma dlya postroeniya po obuchayuschej vyborke s uchitelem approksimatsii diskriminantnoj funktsii s bol'shej tochnost'yu v okrestnosti nulevykh znachenij. Svidetel'stvo o registratsii programmy dlya EhVM. № 2017660808. 2017.

13. Zenkov V.V. Otsenka aposteriornoj veroyatnosti klassa v tochke po approksimatsii odnoj diskriminantnoj funktsii. Svidetel'stvo o registratsii programmy dlya EhVM. № 2017660807. 2017.

14. Dannye dlya zadaniya na TMSh 2014. http://www.machinelearning.ru/wiki/images/e/e1/School-VI-2014-task-3.rar

Система Orphus

Loading...
Up