Application of a scheme with hybrid dissipation in solving problems of computational aeroacoustics

 
PIIS004446690002527-0-1
DOI10.31857/S004446690002527-0
Publication type Article
Status Published
Authors
Affiliation: RFNC – VNIIEF
Address: Russian Federation
Affiliation: RFNC – VNIIEF
Address: Russian Federation
Affiliation: RFNC – VNIIEF
Address: Russian Federation
Affiliation: RFNC – VNIIEF
Address: Russian Federation
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 9
Pages1478-1487
Abstract

  

Keywords
Received19.12.2018
Publication date19.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 854

Readers community rating: votes 0

1. Bui T.T. A Parallel, f?inite-volume algorithm for large-eddy simulation of turbulent flows // NASA. 1999. Tech. Memorandum № 206570.

2. Strelets M. Detached eddy simulation of massively separated flows // AIAA Paper. 2001. № 0879.

3. Shur M., Spalart P.R., Streletc M. Kh., Travin A.K. Towards the prediction of noise from jet engines // Int. J. Heat and Fluid Flow. 2003. V. 24. P. 551–561.

4. Shur M.L., Spalart R., Strelets M. Kh. Noise prediction for increasingly complex jets. part i: methods and tests // Intern. J. Aeroacousics. 2005. V. 4. № 3–4. P. 213.

5. Lin San-Yih, Yu-Fene Chen, Sheng-Chang Shih. Numerical study of muscl schemes for computational aeroacoustics // AIAA Paper. 1997. № 0023.

6. Qin N., Hia H. Detached eddy simulation of a synthetic jet for flow control // Proc. IMechE Part I.J. System and Control Engng. Spec. Issue. 2008. V. 222. P. 373–380.

7. Fu W.-S., Li C.-C., Lin W.-F., Chen Y.-H. Roe scheme with preconditioning method for large eddy simulation of compressible turbulent channel flow // Int. J. Numerical Meth. in Fluids. 2009. V.61. P. 888–910.

8. Xiao Z., Liu J., Huang J., Fu S. Numerical dissipation effects on massive separation around tandem cylinders // AIAA J. 2012. V. 50. № 5. P. 1119–1136.

9. Lyubimov D.A. Development and applications of the efficient hybrid RANS/ILES approach for the calculation of complex turbulent jets // High Temperature. 2008. V. 46. № 2. P. 243–253.

10. Jameson A., Schmidt W., Turkel E. Numerical solutions of the euler equations by finite volume methods using Runge-Kutta time-stepping schemes // AIAA Paper. 1981. № 1259.

11. Liou M.-S. A Sequel to AUSM: AUSM+ // J. Comput. Phys. 1996. V. 129. P. 364–382.

12. Kozelkov A.S., Deryugin Yu.N., Zelenskij D.K., Polischuk S.N., Lashkin S.V., Zhuchkov R.N., Glazunov V.A., Yatsevich S.V., Kurulin V.V. Mnogofunktsional'nyj paket programm LOGOS: fiziko-matematicheskie modeli rascheta zadach aehro-, gidrodinamiki i teplomassoperenosa: Preprint. Sarov: RFYaTs-VNIIEhF, 2013. № 111. C. 67.

13. Rodionov A.V. Primenenie iskusstvennoj vyazkosti dlya bor'by s chislennoj neustojchivost'yu tipa “Karbunkul”: Preprint. Sarov: RFYaTs-FNIIEhF. 2017. № 115. C. 53.

14. Kim K.H., Kim Ch., Rho O.-H. Methods for the accurate computations of hypersonic flows. I AUSMPW+ scheme // J. Comput. Phys. 2001. V. 174. P. 38–80.

15. Comte-Bellot G., Corrsin S. Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, “isotropic” turbulence // J. Fluid Mech. 1971. V. 48. P. 273–337.

16. Lockard D.P., Choudhari M.M., Buning P.G. Grid Sensitivity Study for Slat Noise Simulations // AIAA Paper. 2014. № 2627.

17. Garbaruk A., Shur M., Spalart P.R., Streletc M. Jet noise computation based on enhanced DES formulations accelerating RANS-TO-LES transition in free shear layers // Proc. of the Third International Workshop “Computational Experiment in Aeroacoustics” Sept. 24–27, 2014, Svetlogorsk, Russia, P. 123–127.

Система Orphus

Loading...
Up