PIIS004446690003582-1-1
DOI10.31857/S004446690003582-1
Publication type Article
Status Published
Authors
Affiliation: SFEDU
Address: Russian Federation, Rostov-on-Don
Affiliation: SFEDU
Address: Russian Federation, Rostov-on-Don
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 10
Pages1616-1626
Abstract

  

Keywords
Received11.01.2019
Publication date14.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 868

Readers community rating: votes 0

1. Bracewell R.N. The Fourier Transform and Its Applications. USA: McGraw-Hill. 3rd ed, 2000. P. 630

2. Zalmanzon L.A. Preobrazovanie Fur'e, Uolsha, Khaara i ikh primenenie v upravlenii, svyazi i drugikh oblastyakh. M.:Nauka, Gl.red.fiz.-mat.lit. 1989. S. 496.

3. Rockmore D. Recent Progress and Applications in Group FFTs // Comp. Noncommut. Algebra and Applications. 2004. Vol. 136. P. 227–254.

4. Leinz R. Using representations of the dihedral groups in the design of early vision filters // Acoustics, Speech, and Signal Processing. 1993. Vol. 5. P. 165–168.

5. Zagorodnov I.A., Tarasov R.P. Zadacha difraktsii na telakh s nekommutativnoj konechnoj gruppoj simmetrij i chislennoe ee reshenie // Zhurn. vychisl. matematiki i matem. fiziki. 1997. T. 37. № 10. S. 1246–1262.

6. Maslen D.K., Rockmore D.N, The Cooley-Tukey FFT and Group Theory // Notices of the AMS. 2001. Vol. 48. № 10. P. 1151–1161.

7. Deundyak V.M., Leonov D.A. Primenenie bystrogo preobrazovaniya Fur'e dlya resheniya svertochnykh uravnenij na diehdral'nykh gruppakh // Vestnik SAFU, 2015. № 3. S. 97–107.

8. Deundyak V.M., Leonov D.A. Bystroe preobrazovanie Fur'e i reshenie svertochnykh uravnenij na gruppe Gejzenberga nad prostym polem Galua // Ehkolog. vest. nauch. tsentr. ChEhS. 2016. № 2. S. 46–53.

9. Kisil' V.V. Lokal'nye algebry dvustoronnikh svertok na gruppe Gejzenberga // Mat. zametki. 1996. T. 59. № 3. C. 370–381.

10. Kisil V.V. Plain mechanics: classical and quantum mechanics // J. of Natur. Geom. 1996. V.9. № 3. P. 1–14. (arXiv:funct-an/9405002v3)

11. Kisil' V.V. Lokal'noe povedenie operatorov dvustoronnej svertki s singulyarnymi yadrami na gruppe Gejzenberga // Mat. zametki. 1994. T. 56. № 6. S. 41–55.

12. Kisil V.V. Symmetry, geometry, and quantization with hypercomplex numbers // Geometry, Integrability and Quantization. 2017. V. 18. P. 11–76. (arXiv:1611.05650).

13. Street B. An algebra containing the two-sided convolution operators // Adv. Math. 2008. V. 219. N 1. P. 251–315.

14. Kirillov A.A. Vvedenie v teoriyu predstavlenij i nekommutativnyj garmonicheskij analiz // Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya. 1988. T. 22. S. 5–162.

15. Kh'yuitt Eh., Ross K. Abstraktnyj garmonicheskij analiz. M.: Nauka. 1975. T. 2. S. 900.

16. Diaconis P., Rockmore D. Efficient Computation of Fourier Inversion for Finite Groups // J. of the ACM. 1994. Vol. 41. № 1. P. 31–66.

17. Lankaster P. Teoriya matrits. M.: Nauka, 1973. S. 280.

18. Terras A. Fourier analysis on finite groups and applications. Cambridge University Press, 1999. S. 456.

Система Orphus

Loading...
Up