PIIS004446690003581-0-1
DOI10.31857/S004446690003581-0
Publication type Article
Status Published
Authors
Affiliation:
The Nuclear Safety Institute of RAS
NEFU
Address: Russian Federation
Affiliation: NEFU
Address: Russian Federation
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 10
Pages1604-1615
Abstract

  

Keywords
Received11.01.2019
Publication date14.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1070

Readers community rating: votes 0

1. Pavliotis G. A., Stuart A. Multiscale Methods: Averaging and Homogenization. New York: Springer, 2008.

2. Steinhauser M. O. Computational Multiscale Modeling of Fluids and Solids: Theory and Applications. 2 edition. Berlin: Springer, 2017.

3. Weinan E. Principles of Multiscale Modeling. Cambridge: Cambridge University Press, 2011.

4. Kuehn Ch. Multiple Time Scale Dynamics. Cham: Springer, 2015.

5. Kreiss H.-O. Problems with different time scales. // Acta Numerica. 1992. Vol. 1. Pp. 101–139.

6. Engquist B., Tsai Y.-H. Heterogeneous multiscale methods for stiff ordinary differential equations. // Mathematics of Computation. 2005. Vol. 74, no. 252. Pp. 1707–1742.

7. Abdulle A., Weinan E., Engquist B., Vanden-Eijnden E. The heterogeneous multiscale method. // Acta Numerica. 2012. Vol. 21. Pp. 1–87.

8. Geiser J. Recent advances in splitting methods for multiphysics and multiscale: theory and applications. // Journal of Algorithms & Computational Technology. 2015. Vol. 9, no. 1. Pp. 65–93.

9. Geiser J. Multicomponent and Multiscale Systems: Theory, Methods, and Applications in Engineering. Cham: Springer, 2016.

10. Marchuk G. I. Splitting and alternating direction methods. // Handbook of Numerical Analysis, Vol. I / Ed. by P. G. Ciarlet, J.-L. Lions. North-Holland, 1990. Pp. 197–462.

11. Vabishchevich P. N. Additive Operator-Difference Schemes: Splitting Schemes. Berlin: de Gruyter, 2014.

12. Samarskii A. A. The Theory of Difference Schemes. New York: Marcel Dekker, 2001.

13. Angermann L., Knabner P. Numerical Methods for Elliptic and Parabolic Partial Differential Equations. New York: Springer, 2003.

14. Grossmann C., Roos H. G., Stynes M. Numerical Treatment of Partial Differential Equations. Berlin: Springer, 2007.

15. Thomée V. Galerkin Finite Element Methods for Parabolic Problems. Berlin: Springer, 2006.

16. Samarskii A. A., Matus P. P., Vabishchevich P. N. Difference Schemes with Operator Factors. Berlin: Kluwer, 2002.

17. Abrashin V. N. Ob odnom variante metoda peremennykh napravlenij resheniya mnogomernykh zadach matematicheskoj fiziki. // Differentsial'nye uravneniya. 1990. T. 26. S. 314–323.

18. Vabischevich P. N. Vektornye additivnye raznostnye skhemy dlya ehvolyutsionnykh uravnenij pervogo poryadka. // Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki. 1996. T. 36(3). S. 44–51.

19. Samarskij A. A., Vabischevich P. N., Matus P. P. Ustojchivost' vektornykh additivnykh skhem // Doklady AN. 1998. T. 361. S. 746–748.

20. Morton K. W., Kellogg R. B. Numerical Solution of Convection–Diffusion Problems. London: Chapman & Hall, 1996.

21. Samarskij A. A., Vabischevich P. N. Chislennye metody resheniya zadach konvektsii–diffuzii. Moskva: URSS, 1999.

22. Logg A., Mardal K. A., Wells G. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Springer, 2012.

Система Orphus

Loading...
Up