Уравнения реакции-диффузии в иммунологии

 
Код статьиS004446690003551-7-1
DOI10.31857/S004446690003551-7
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация:
Российский университет дружбы народов
Ин-т вычисл. матем. РАН
Адрес: Российская Федерация
Аффилиация:
Российский университет дружбы народов
Исследовательская группа 5208 НЦНИ Франции
INRIA, Лион Дуа, Франция
Междисциплинарный научн. центр Понселе НМУ 2615 НЦНИ Франции
Адрес: Российская Федерация, Франция
Аффилиация:
Российский университет дружбы народов
ФИЦ ИУ РАН
Адрес: Российская Федерация
Название журналаЖурнал вычислительной математики и математической физики
ВыпускТом 58 Номер 12
Страницы2048-2059
Аннотация

Данная статья посвящена последним работам по реакционно-диффузным моделям динамики вирусных инфекций в организме человека и животных. Описаны различные режимы распространения инфекции в тканях. В частности, показано, что инфекция может распространяться в ткани чувствительных органов как реакционно-диффузная волна. Обсуждаются методы изучения условий существования волных режимов пространственно-временной динамики инфекций.

Ключевые словавирусная инфекция, иммунный ответ, математическое моделирование, уравнения реакции-диффузии, пространственно-временная динамика
Источник финансированияРабота выполнена при финансовой поддержке РФФИ (код проекта17-01-00636) и Минобрнауки РФ по Программе повышения конкурентоспособности РУДН «5-100» среди ведущих мировых научно-образовательных центров на 2016–2020 гг.
Получено23.01.2019
Дата публикации23.01.2019
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 1229

Оценка читателей: голосов 0

1. Perelson A.S., Kirschner D.E., De Boer R. Dynamics of HIV Infection of CD4 T Cells// Math. Biosci. 1993. 114(1). P. 81–125.

2. Nowak M.A., Bangham C.R.M. Population Dynamics of Immune Responses to Persistent Viruses// Science. 1996. 272. P. 74–79.

3. Perelson A.S., Neumann A.U., Markowitz M., Leonard J.M., Ho D.D. HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time// Science. 1996. 271. P. 1582–1586.

4. Perelson A.S. Modelling Viral and Immune System Dynamics// Nat. Rev. Immunol. 2002. 2. P. 28–36.

5. Wodarz D., Nowak M.A. Mathematical Models of HIV Pathogenesis and Treatment// BioEssays. 2002. 24. P. 1178–1187.

6. Alizon S., Magnus C. Modelling the Course of an HIV Infection: Insights from Ecology and Evolution// Viruses. 2012. 4. P. 1984–2013.

7. Gadhamsetty S., Coorens T., de Boer R.J. Notwithstanding circumstantial alibis, cytotoxic T cells can be major killers of HIV-1 infected cells//Journal of Virology. 2016. 90(16). P. 7066–7083.

8. Nowak M.A., Bonhoeffer S., Hill A.M., Boehme R., Thomas H.C., McDade H. Viral Dynamics in Hepatitis B Virus Infection// Proc. Natl. Acad. Sci. USA. 1996. 93. P. 4398–4402.

9. Neumann A.U., Lam, N.P., Dahari, H., Gretch, D.R., Wiley, T.E., Layden, T.J., Perelson, A.S. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon- therapy// Science. 1998. 282. P. 103–107.

10. De Boer R.J., Oprea M., Antia R., Murali-Krishna K., Ahmed R., Perelson A.S. Recruitment Times, Proliferation, and Apoptosis Rates during the CD8 T-Cell Responses to Lymphocytic Choriomeningitis Virus// Journal of Virology. 2001. Vol.75, No.22. P. 10663–10669.

11. De Boer R.J., Homann D., Perelson A.S. Different Dynamics of CD4 and CD8 T cell Responses During and After Acute Lymphocytic Choriomeningitis Virus Infection// J. Immunol. 2003. 171. P. 3928–3935.

12. Althaus C.L., Ganusov V.V., De Boer R.J. Dynamics of CD8 T cell Responses during Acute and Chronic Lymphocytic Choriomeningitis Virus Infection// J. Immunol. 2007. 179. P. 2944–2951.

13. Марчук Г.И. Математическое моделирование в иммунологии и медицине Т.4. Избранные труды в 5 т. / Российская академия наук, Институт вычислительной математики. — М. РАН, 2018.

14. Marchuk G. I. Mathematical Modelling of Immune Response in Infectious Diseases. Mathematics and Its Applications 395, Dordrecht: Kluwer, 1997.

15. Бочаров Г.А., Марчук Г.И. Прикладные проблемы математического моделирования в иммунологии. Журнал вычислительной математики и математической физики. 2000. Т. 40 (12). C. 1905-1920.

16. Marchuk G.I., Petrov R.V., Romanyukha A.A., Bocharov G.A. Mathematical Model of Antiviral Immune Response. I. Data Analysis, Generalized Picture Construction and Parameters Evaluation for Hepatitis B// J. theor. Biol. 1991. 151. P. 1–40.

17. Marchuk G.I., Romanyukha A.A., Bocharov G.A. Mathematical Model of Antiviral Immune Response. II. Parameters Identification for Acute Viral Hepatitis B// J. theor. Biol. 1991. 151. P. 41–70.

18. Bocharov G.A. Mathematical Model of Antiviral Immune Response. III. Influenza A Virus Infection// J. theor. Biol. 1994. 167. P. 323–360.

19. Bocharov G.A. Modelling the Dynamics of LCMV Infection in Mice: Conventional and Exhaustive CTL Responses// J. theor. Biol. 1998. 192. P. 283–308.

20. Bocharov G., Klenerman P., Ehl S. Modelling the Dynamics of LCMV Infection in Mice: II. Compartment Structure and Immunopathology// J. theor. Biol. 2003. 221. P. 349–378.

21. Bocharov G., Ludewig B., Bertoletti A., Klenerman P., Junt T., Krebs P., Luzyanina T., Fraser C., Anderson R.M. Underwhelming the Immune Response: Effect of Slow Virus Growth on CD8 -T-Lymphocyte Responses// Journal of Virology. 2004. Vol.78, No.5. P. 2247–2254.

22. Bocharov G., Argilaguet J., Meyerhans A. Understanding Experimental LCMV Infection of Mice: The Role of Mathematical Models// Journal of Immunology Research. 2015. 2015(16). P. 1–10.

23. Funk G.A., Jansen V.A., Bonhoeffer S., Killingback T. Spatial models of virus-immune dynamics// J. Theor. Biol. 2005. 233(2). P. 221–236.

24. Strain M.C., Richman D.D., Wong J.K., Levine H. Spatiotemporal dynamics of HIV propagation// J. Theor. Biol. 2002. 218(1). P. 85–96.

25. Beauchemin C. Probing the effects of the well-mixed assumption on viral infection dynamics// J. Theor. Biol. 2006. 242(2). P. 464–477.

26. Sewald X., Motamedi N., Mothes W. Viruses exploit the tissue physiology of the host to spread in vivo// Current Opinion in Cell Biology. 2016. 41. P. 81–90.

27. Mothes W., Sherer N.M., Jin J., Zhong P. Virus cell-to-cell transmission// J. Virol. 2010. 84. P. 8360–8368.

28. Graw F., Martin D.N., Perelson A.S., Uprichard S.L., Dahari H. Quantification of Hepatitis C Virus Cell-to-Cell Spread Using a Stochastic Modeling Approach// J. Virol. 2015. 89(13). P. 6551–6561.

29. Prokopiou S.A., Barbaroux L., Bernard S., Mafille J., Leverrier Y., Arpin C., Marvel J., Gandrillon O., Crauste F. Multiscale Modeling of the Early CD8 T-Cell Immune Response in Lymph Nodes: An Integrative Study // Computation. 2014. 2. P. 159–181.

30. Dunia R., Bonnecaze R. Mathematical Modeling of Viral Infection Dynamics in Spherical Organs// J. Math. Biol. 2013. 67. P. 1425–1455.

31. Bocharov G., Danilov A., Vassilevski Yu., Marchuk G.I., Chereshnev V.A., Ludewig B. Reaction-Diffusion Modelling of Interferon Distribution in Secondary Lymphoid Organs // Math. Model. Nat. Phenom. 2011. Vol.6, No.7. P. 13–26.

32. Kislitsyn A., Savinkov R., Novkovic M., Onder L., Bocharov G. Computational Approach to 3D Modeling of the Lymph Node Geometry// Computation. 2015. 3. P. 222–234.

33. Haseltine E.L., Lam V., Yin J., Rawlings J.B. Image-Guided Modeling of Virus Growth and Spread // Bull Math Biol. 2008. 70(6). P. 1730–1748.

34. Su B., Zhou W., Dorman K.S., Jones D.E. Mathematical modelling of immune response in tissues// Computational and Mathematical Methods in Medicine. 2009. Vol.10, No.1. P. 9–38.

35. Stancevic O., Angstmann C.N., Murray J.M., Henry B.I. Turing Patterns from Dynamics of Early HIV Infection//Bull. Math. Biol. 2013. 75. P. 774–795.

36. Getto Ph., Kimmel M., Marciniak-Czochra A. Modelling and analysis of dynamics of viral infection of cells and of interferon resistance// J. Math. Anal. Appl. 2008. 344. P. 821–850.

37. Labadie M., Marciniak-Czochra A. A reaction-diffusion model for viral infection and immune response. 2011. hal-00546034v2

38. Bertolusso R., Kimmel M. Spatial and Stochastic Effects in a Model of Viral Infection// Fundamenta Informaticae. 2012. 118. P. 327–343.

39. Bocharov G., Meyerhans A., Bessonov N., Trofimchuk S., Volpert V. Spatiotemporal dynamics of virus infection spreading in tissues. PlosOne, DOI:10.1371/journal.pone.0168576 December 20, 2016.

40. Trofimchuk S., Volpert V. Traveling waves for a bistable reaction-diffusion equation with delay. SIAM Journal on Mathematical Analysis, 2018, 50(1), 1175-1190.

41. Bocharov G., Meyerhans A., Bessonov N., Trofimchuk S., Volpert V. Modelling the dynamics of virus infection and immune response in space and time. The International Journal of Parallel, Emergent and Distributed Systems, 2017.

42. Bocharov G., Ludewig B., Meyerhans A., Volpert V. Mathematical Immunology of Virus Infections. Springer

43. Bouchnita A., Bocharov G., Meyerhans A., Volpert V. Towards a Multiscale Model of Acute HIV Infection. Computations, 5 (2017), 1-22; doi:10.3390/computation5010006.

44. Bouchnita A., Bocharov G., Meyerhans A., Volpert V. Hybrid approach to model the spatial regulation of T cell responses. BMC Immunology, 18 (2017).

45. Volpert V. Existence of reaction-diffusion waves in a model of immune response. J. Fixed Points and Applications, 2018, in press.

Система Orphus

Загрузка...
Вверх