Фемтосекундная лазерная технология обработки твердотельных материалов: создание функциональных поверхностей и селективная модификация наноразмерных слоев

 
Код статьиS004036440002729-5-1
DOI10.31857/S004036440002729-5
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация: ФГБУН Объединенный институт высоких температур Российской академии наук (ОИВТ РАН)
Адрес: Российская Федерация
Аффилиация: ФГБУН Объединенный институт высоких температур Российской академии наук (ОИВТ РАН)
Адрес: Российская Федерация
Аффилиация: ФГБУН Объединенный институт высоких температур Российской академии наук (ОИВТ РАН)
Адрес: Российская Федерация
Название журналаТеплофизика высоких температур
ВыпускТом 56 Номер 4
Страницы609-630
Аннотация

Представлена информация о стремительно растущем направлении модифицирования поверхности твердотельных материалов с помощью фемтосекундных лазерных импульсов умеренной интенсивности (~0.1–10 ТВт/см2) применительно к созданию функциональных поверхностей с заданными теплофизическими, гидродинамическими и механическими свойствами, а также селективной модификации и удаления наноразмерных (1–100 нм) слоев массивных и тонкопленочных многослойных материалов. Рассмотрены задачи получения функциональных поверхностей с изменяемым за счет внешних воздействий смачиванием супергидрофобных поверхностей с эффектом самоочищения, а также супергидрофильных поверхностей с управляемыми температурой Лейденфроста критическим тепловым потоком и коэффициентом теплоотдачи для интенсификации теплообмена при испарении и кипении рабочей жидкости. Представлены данные об упрочнении поверхностного слоя конструкционных материалов и синтезе алмазоподобных пленок. Рассмотрены методы прецизионного селективного удаления нанотолщинных пленок и модификации поверхности с образованием субнаноразмерных структур.

Ключевые слова
Получено26.12.2018
Дата публикации26.12.2018
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 918

Оценка читателей: голосов 0

1. Abbey B., Dilanian R. A., Darmanin C., Ryan R. A., Putkunz C. T., Martin A. V. Quiney H. M. et. al. X-Ray Laser-Induced Electron Dynamics Observed by Femtosecond Diffraction from Nanocrystals of Buckminsterfullerene // Science Advances. 2016. V. 2. № 9. E1601186.

2. Potter E.D., Herek J. L., Pedersen S., Liu Q., Zewail A. H. Femtosecond Laser Control of a Chemical Reaction // Nature. 1992. V. 355. P. 66.

3. Meesat R., Belmouaddine H., Allard J.-F., Tanguay-Renaud C., Lemay R., Brastaviceanu T., Houde D. et. al. Cancer Radiotherapy Based on Femtosecond IR Laser-Beam Filamentation Yielding Ultra-High Dose Rates and Zero Entrance Dose // Proc. Natl. Acad. Sci. U.S.A. 2012. V. 109. № 38. P. E2508.

4. Zhu Y., He H. Molecular Response of Mitochondria to a Short-Duration Femtosecond-Laser Stimulation // Biomed. Opt. Express. 2017. V. 8. № 11. P. 4965.

5. Rodriguez R., Redman R. More than 400 Million Years of Evolution and Some Plants Still Can’t Make It on Their Own: Plant Stress Tolerance via Fungal Symbiosis // J. Exp. Bot. 2008. V. 59. № 5. P. 1109.

6. Дмитриев А. С. Введение в нанотеплофизику (монография). М.: БИНОМ, 2015. 792 с.

7. Дмитриев А.С., Михайлова И. А. Введение в наноэнергетику. М.: Издат. дом МЭИ, 2011. 320 с.

8. Vorobyev A., Guo C. Direct Femtosecond Laser Surface Nano/Microstructuring and Its Applications // Laser Photon. Rev. 2013. V. 7. P. 385.

9. Ашитков С.И., Ромашевский С. А., Комаров П. С., Бурмистров А. А., Жаховский В. В., Иногамов Н. А., Агранат М. Б. Образование наноструктур при фемтосекундной лазерной абляции металлов // Квантовая электроника. 2015. Т. 44. В. 6. С. 535.

10. Vorobyev A., Guo C. Femtosecond Laser Nanostructuring of Metals // Opt. Express. 2006. V. 14. № 6. P. 2164.

11. Tull B., Carey J., Mazur E., McDonald J., Yalisove S. Silicon Surface Morphologies after Femtosecond Laser Irradiation // MRS Bull. 2006. V. 31. P. 626.

12. Romashevskiy S.A., Ashitkov S. I., Ovchinnikov A. V., Kondratenko P. S., Agranat M. B. Formation of Periodic Mesoscale Structures Arranged in a Circular Symmetry at the Silicon Surface Exposed to Radiation of a Single Femtosecond Laser Pulse // Appl. Surf. Sci. 2016. V. 374. P. 12.

13. Shi X., Li X., Jiang L., Qu L., Zhao Y., Ran P., Wang Q., Cao Q., Ma T., Lu Y. Femtosecond Laser Rapid Fabrication of Large-Area Rose-Like Micropatterns on Freestanding Flexible Graphene Films // Scientific Reports. 2015. V. 5. P. 17557.

14. Wang Z.K., Zheng H. Y., Xia H. M. Femtosecond Laser- Induced Modification of Surface Wettability of PMMA for Fluid Separation in Microchannels // Microfluid. Nanofluid. 2011. V. 10. Is. 1. P. 225.

15. Chang T.-L., Chen C.-Y., Wang C.-P. Precise Ultrafast Laser Micromachining in Thin-Film CIGS Photovoltaic Modules // Microelectronic Engineering. 2013. V. 110. P. 381.

16. Streubel R., Bendt G., Gokce B. Pilot-Scale Synthesis of Metal Nanoparticles by High-Speed Pulsed Laser Ablation in Liquids // Nanotechnology. 2016. V. 27. P. 205602.

17. Zhang X., Liu H., Huang X., Jiang H. One-Step Femtosecond Laser Patterning of Light-Trapping Structure on Dye-Sensitized Solar Cell Photoelectrodes // J. Mater. Chem. C. 2015. V. 3. P. 3336.

18. Bonse J., Brzezinka K.-W., Meixner A. J. Modifying Single-Crystalline Silicon by Femtosecond Laser Pulses: An Analysis by Micro Raman Spectroscopy, Scanning Laser Microscopy and Atomic Force Microscopy // Appl. Surf. Sci. 2004. V. 221. P. 215.

19. Von der Linde D., Sokolowski-Tinten K. The Physical Mechanisms of Short-Pulse Laser Ablation // Appl. Surf. Sci. 2000. V. 154–155. P. 1.

20. Younkin R., Carey J. E., Mazur E., Levinson J. A., Friend C. M. Infrared Absorption by Conical Silicon Microstructures Made in a Variety of Background Gases Using Femtosecond-Laser Pulses // J. Appl. Phys. 2003. V. 93. P. 2626.

21. Kruse C., Anderson T., Wilson C., Zuhlke C., Alexander D., Gogos G., Ndao S. Extraordinary Shifts of the Leidenfrost Temperature from Multiscale Micro/Nanostructured Surfaces // Langmuir. 2013. V. 29. P. 9798.

22. Kruse C., Anderson T., Wilson C., Zuhlke C., Alexander D., Gogos G., Ndao S. Enhanced Pool-Boiling Heat Transfer and Critical Heat Flux on Femtosecond Laser Processed Stainless Steel Surfaces // Int. J. Heat Mass Transfer. 2015. V. 82. P. 109.

23. Kruse C., Somanas I., Anderson T. Wilson C, Zuhlke C., Alexander D., Gogos G., Ndao S. Self-Propelled Droplets on Heated Surfaces with Angled Self-Assembled Micro/ Nanostructures // Microfluid. Nanofluid. 2015. V. 18. № 5. P. 1417.

24. Vorobyev A., Guo C. Metal Pumps Liquid Uphill // Appl. Phys. Lett. 2009. V. 94. P. 224102.

25. Vorobyev A.Y., Guo C. Multifunctional Surfaces Produced by Femtosecond Laser Pulses // J. Appl. Phys. 2015. V. 117. P. 033103.

26. Vorobyev A., Guo C. Laser Turns Silicon Superwicking // Opt. Express. 2010. V. 18. P. 6455.

27. Baldacchini T., Carey J. E., Zhou M., Mazur E. Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser // Langmuir. 2006. V. 22. № 11. P. 4917.

28. Wu B., Zhou M., Li J., Ye X., Li G., Cai L. Superhydrophobic Surfaces Fabricated by Microstructuring of Stainless Steel Using a Femtosecond Laser // Appl. Surf. Sci. 2009. V. 256. P. 61.

29. Zorba V., Persano L., Pisignano D., Athanassiou A., Stratakis E., Cingolani R., Tzanetakis P., Fotakis C. Making Silicon Hydrophobic: Wettability Control by Two-Length Scale Simultaneous Patterning with Femtosecond Laser Irradiation // Nanotechnology. 2006. V. 17. P. 3234.

30. Barberoglou M., Zorba V., Stratakis E., Spanakis E., Tzanetakis P., Anastasiadis S. H., Fotakis C. Bio-Inspired Water Repellent Surfaces Produced by Ultrafast Laser Structuring of Silicon // Appl. Surf. Sci. 2009. V. 255. P. 5425.

31. Frysali M.A., Papoutsakis L., Kenanakis G., Anastasiadis S. H. Functional Surfaces with Photocatalytic Behavior and Reversible Wettability: ZnO Coating on Silicon Spikes // J. Phys. Chem. C. 2015. V. 119. P. 25401.

32. Bizi-Bandoki P., Benayoun S., Valette S., Beaugiraud B., Audouard E. Modifications of Roughness and Wettability Properties of Metals Induced by Femtosecond Laser Treatment // Appl. Surf. Sci. 2011. V. 257. P. 5213.

33. Paradisanos I., Fotakis C., Anastasiadis S. H., Stratakis E. Gradient Induced Liquid Motion on Laser Structured Black Si Surfaces // Appl. Phys. Lett. 2015. V. 107. P. 111603.

34. Romashevskiy S.A., Agranat M. B., Dmitriev A. S. Thermal Training of Functional Surfaces Fabricated with Femtosecond Laser Pulses // High Temperature. 2016. Т. 54. № 3. P. 461.

35. Romashevskiy S.A., Ovchinnikov A. V. Functional Surfaces with Enhanced Heat Transfer for Spray Cooling Technology // High Temperature. 2018. T. 56. 4. C.?

36. Агранат М.Б., Ашитков С. И., Овчинников А. В., Ромашевский С. А. Способ создания сквозных микроканалов с диаметрами микронных и субмикронных размеров в кристалле кремния с помощью лазерных импульсов. Патент РФ № 2015106949/28.27.02.2015.

37. Peyre P., Berthe L., Scherpereel X., P. Fabbro R. Laser-Shock Processing of Aluminium-Coated 55C1 Steel in Water-Confinement Regime, Characterization and Application to High-Cycle Fatigue Behaviour // Mater. Sci. 1998. V. 33. P. 1421.

38. Sano Y., Obata M., Kubo T., Mukai N., Yoda M., Masaki K., Ochi Y. Retardation of Crack Initiation and Growth in Austenitic Stainless Steels by Laser Peening Without Protective Coating // Sci. Eng. A. 2006. V. 417. P. 334.

39. Cheng G. J., Pirzada D., Zhou M. Microstructure and Mechanical Property Characterizations of Metal Foil after Microscale Laser Dynamic Forming // J. Appl. Phys. 2007. V. 101. P. 063108.

40. Gao H., Cheng G. J. Laser-Induced High-Strain-Rate Superplastic 3-D Microforming of Metallic Thin Films // J. Microelectromech. Syst. 2010. V. 19. № 2. P. 273.

41. Zhou J.Z., Yang J. C., Zhang Y. K., Zhou M. A Study on Super-Speed Forming of Metal Sheet by Laser Shock Waves // J. Mater. Process. Technol. 2002. V. 129. P. 241.

42. Zhou M., Zhang Y. K., Cai L. Ultrahigh-Strain-Rate Plastic Deformation of a Stainless-Steel Sheet with Tin Coatings Driven by Laser Shock Waves // Appl. Phys. A. 2003. V. 77. P. 549.

43. Zheng C., Sun S., Ji Z., Wang W. Effect of Laser Energy on the Deformation Behavior in Microscale Laser Bulge Forming // Appl. Surf. Sci. 2010. V. 257. P. 1589.

44. Ocana J.L., Morales M., Molpeceres C., Porro J. A. A Review on the Physics and Technological Issues of High Intensity Laser Shock Processing of Materials as a Method for Mechanical Properties Modification // Proc. SPIE. 2006. V. 6346. P. 63461.

45. Nie X., He W., Li Q.-P., Long N. Chai Y. Experiment Investigation on Microstructure and Mechanical Properties of TC17 Titanium Alloy Treated by Laser Shock Peening with Different Laser Fluence // J. Laser Appl. 2013. V. 25. P. 042001.

46. Peyre P., Scherpereel X., Berthe L., Carboni C., Fabbro R., Beranger G., Lemaitre C. Surface Modifications Induced in 316L Steel by Laser Peening and Shot-Peening. Influence on Pitting Corrosion Resistance // Mater. Sci. Eng. A. 2000. V. 280. Is. 2. P. 294.

47. Yilbas B.S., Shuja S. Z., Arif A., Gondal M. A. Laser Shock Processing of Steel // J. Mater. Process. Technol. 2003. V. 135. P. 6.

48. Yakimets I., Richard C., Beranger G., Peyre P. Laser Peening Processing Effect on Mechanical and Tribological Properties of Rolling Steel 100Cr6 // Wear. 2004. V. 256. P. 311.

49. Aldajah S.H., Ajayi O. O., Fenske G. R., Xu Z. Effect of Laser Surface Modifications Tribological Performance of 1080 Carbon Steel // J. Tribol. 2005. V. 127. P. 596.

50. Farrahi G.H., Ghadbeigi H. An Investigation into the Effect of Various Surface Treatments on Fatigue Life of a Tool Steel // J. Mater. Process. Technol. 2006. V. 174. P. 318.

51. Fairand B.P., Wilcox B. A., Gallagher W. J., Williams D. N. Laser Shock-Induced Microstructural and Mechanical Property Changes in 7075 Aluminum // J. Appl. Phys. 1972. V. 43. № 9. P. 3893.

52. Peyre P., Fabbro R., Merrien P., Lieurade H. P. Laser Shock Processing of Aluminium Alloys. Application to High Cycle Fatigue Behaviour // Mater. Sci. Eng. A. 1996. V. 210. P. 102.

53. Hong Z. and Chengye Y. Laser Shock Processing of 2024-T62 Aluminum Alloy // Mater. Sci. Eng. A. 1998. V. 257. P. 322.

54. Rubio-Gonzalez C., Ocana J. L., Gomez-Rosas G., Molpeceres C., Paredes M., Banderas A., Porro J., Morales M. Effect of Laser Shock Processing on Fatigue Crack Growth and Fracture Toughness of 6061-T6 Aluminum Alloy // Mater. Sci. Eng. A. 2004. V. 386. P. 291.

55. Tan Y., Wu G., Yang J. M., Pan T. Laser Shock Peening on Fatigue Crack Growth Behaviour of Aluminum Alloy // Fatigue Fract. Eng. Mater. Struct. 2004. V. 27. P. 649.

56. Forget P., Strudel J. L., Jeandin M., Lu J., Castex L. Laser Shock Surface Treatment of Ni-Based Superalloys // Mater. Manuf. Processes. 1990. V. 5. P. 501.

57. Hammersley G., Hackel L. A., Harris F. Surface Prestressing to Improve Fatigue Strength of Components by Laser Shot Peening // Opt. Lasers Eng. 2000. V. 34. P. 327.

58. Kaspar J., Luft A., Skrotzki W. Deformation Modes and Structure Evolution in Laser-Shock-Loaded Molybdenum Sing Crystals of High Purity // Cryst. Res. Technol. 2000. V. 35. P. 437.

59. Wenwu Z., Lawrence Yao Y., Noyan I. C. Microscale Laser Shock Peening of Thin Films, Part 2: High Spatial Resolution Material Characterization // J. Manuf. Sci. Eng. 2004. V. 126. P. 18.

60. See D.W., Dulaney J. L., Clauer A. H., Tenaglia R. D. The Air Force Manufacturing Technology Laser Peening Initiative // Surf. Eng. 2002. V. 18. P. 32.

61. Tsujino M., Sano T., Ogura T., Okoshi M., Inoue N., Ozaki N., Kodama R., Kobayashi K. F. Hirose A. Formation of High-Density Dislocations and Hardening in Femtosecond-Laser-Shocked Silicon // Appl. Phys. Express. 2012. V. 5. P. 022703.

62. Matsuda T., Sano T., Arakawa K., Hirose A. Multiple-Shocks Induced Nanocrystallization in Iron // Appl. Phys. Lett. 2014. V. 105. P. 021902.

63. Valiev R. Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties // Nature Mater. 2004. V. 3. P. 511.

64. Matsuda T., Sano T., Arakawa K., Hirose A. Dislocation Structure Produced by an Ultrashort Shock Pulse // J. Appl. Phys. 2014. V. 116. P. 183506.

65. Meyers M.A., Jarmakani H., Bringa E. M., Remington B. A. Dislocations in Solids / Eds. Hirth J. P. and Kubin L. Amsterdam: North-Holland, 2009. V. 15. P. 91.

66. Demaske B.J., Zhakhovsky V. V., Inogamov N. A., Oleynik I. I. Ultrashort Shock Waves in Nickel Induced by Femtosecond Laser Pulses // Phys. Rev. B. 2013. V. 87. P. 054109.

67. Ham R. K. The Determination of Dislocation Densities in Thin Films // Philos. Mag. 1961. V. 6. P. 1183.

68. Nian Q., Wang Y., Yang Y., Li J., Zhang M. Y., Shao J., Tang L., Cheng G. J. Direct Laser Writing of Nanodiamond Films from Graphite Under Ambient Conditions // Scientific Reports. 2014. V. 4. P. 6612.

69. Hartl, A. Schmich E., Garrido J. A., Hernando J., Catharino S. C.R., Walter S., Feulner P., Kromka A., Steinmuller D., Stutzmann M. Protein-Modified Nanocrystalline Diamond Thin Films for Biosensor Applications // Nat. Mater. 2004. V. 3. P. 736.

70. Prawer S., Greentree A. D. Diamond for Quantum Computing // Science. 2008. V. 320. P. 1601.

71. Nakagawa K., Nishitani-Gamo M., Ando T. Hydrogen Production from Methane for Fuel Cell Using Oxidized Diamond-Supported Catalysts // Int. J. Hydrogen Energy. 2005. V. 30. P. 201.

72. Wolters J., Schell A. W., Kewes G. Nusse N., Schoengen M., Doscher H., Hannappe T., Lochel B., Barth M., Benson O. Enhancement of the Zero Phonon Line Emission from a Single Nitrogen Vacancy Center in a Nanodiamond via Coupling to a Photonic Crystal Cavity // Appl. Phys. Lett. 2010. V. 97. № 14. P. 141108.

73. May P. W. The New Diamond Age // Science. 2008. V. 319. P. 1490.

74. Das D., Singh R. N. A Review of Nucleation, Growth and Low Temperature Synthesis of Diamond Thin Films // Int2007. V. 52. P. 29.

75. Corentin L.G., Fabrice B., Tetsuo I. Ohfuji H., Rouzaud J.-N. Nanodiamond Nucleation Below 2273 K at 15 GPa from Carbons with Different Structural Organizations // Carbon. 2007. V. 45. P. 636.

76. Irifune T., Kurio A., Sakamoto S. Inoue T., Sumiya H. Materials: Ultrahard Polycrystalline Diamond from Graphite //

77. . V. 333. P. 440.

78. Angus J.C., Will H. A., Stanko W. S. Growth of Diamond Seed Crystals by Vapor Deposition // J. Appl. Phys. 1968. V. 39. P. 2915.

79. Narayan J., Godbole V. P., White C. W. Laser Method for Synthesis and Processing of Continuous Diamond Films on Nondiamond Substrates // Science. 1991. V. 252. P. 416.

80. Merkulov V.I., Lowndes D. H., Jellison Puretzky A. A., Geohegan D. B. Structure and Optical Properties of Amorphous Diamond Films Prepared by ArF Laser Ablation as a Function of Carbon Ion Kinetic Energy // Appl. Phys. Lett. 1998. V. 73. P. 2591.

81. Mistry P., Turchan M. C., Shengzhong L., Granse G. O., Baurmann T., Shara M. G. New Rapid Diamond Synthesis Technique; Using Multiplexed Pulsed Lasers in Laboratory Ambients // Mater. Res. Innovations. 1997. V. 1. P. 149.

82. Varnin V.P., Laptev V. A., Ralchenko V. G. The State of the Art in the Growth of Diamond Crystals and Films // Inorg. Mater. 2006. V. 42. P. 1.

83. Sankaran K.J., Chen H. C., Sundaravel B., Lee C. Y., Tai1 N.H., Lin I. N. Gold Ion Implantation Induced High Conductivity and Enhanced Electron Field Emission Properties in Ultrananocrystalline Diamond Films // Appl. Phys. Lett. 2013. V. 102. P. 061604.

84. Liu C., Xiao X., Wang J., Shi B. Dielectric Properties of Hydrogen-Incorporated Chemical Vapor Deposited Diamond Thin Films // J. Appl. Phys. 2007. V. 102. P. 074115.

85. Gaudin J., Peyrusse O., Chalupsky J., Toufarova M., Vys?n L., Hajkova V., Sobierajski R., Burian T. Amorphous to Crystalline Phase Transition in Carbon Induced by Intense Femtosecond X-Ray Free-Electron Laser Pulses // Phys. Rev. B. 2012. V. 86. P. 024103.

86. Hirsch A. The Era of Carbon Allotropes // Nature Materials. 2010. V. 9. P. 868.

87. Robertson J. Diamond-Like Amorphous Carbon // Mater. Sci. Engng. R. 2002. V. 37. P. 129.

88. Ferrari A.C., Kleinsorge B., Morrison N. A., Hart A. Stress Reduction and Bond Stability During Thermal Annealing of Tetrahedral Amorphous Carbon // J. Appl. Phys. 1999. V. 85. P. 7191.

89. Canzado L.G., Takai K., Enoki T., Endo M., Kim Y. A., Mizusaki H., Jorio A., Coelho L. N., Magalhaes-Paniago R., Pimenta M. A. General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy // Appl. Phys. Lett. 2006. V. 88. P. 163106.

90. Takai T., Oga M., Sato H., Enoki T., Ohki Y., Taomoto A., Suenaga K., Iijima S. Structure and Electronic Properties of a Nongraphitic Disordered Carbon System and its Heat-Treatment Effects // Phys. Rev. B. 2003. V. 67. P. 214202.

91. Mcculloch D.C., Gerstner E. G., Mckenzie D. R., Prawer S., Kalish R. Ion Implantation in Tetrahedral Amorphous Carbon // Phys. Rev. B. 1995. V. 52. P. 850.

92. Linang Y., Mera Y., Maeda K. Atomistic Process of Electron-Stimulated Structural Ordering in Tetrahedral Amorphous Carbon // Diamond Relat. Mater. 2008. V. 17. № 18. P. 137.

93. Kononenko T.V., Pimenov S. M., Kononenko V. V., Romano V., Luthy W., Konov V. I. Femtosecond Laser Writing of Buried Graphitic Structures in Bulk Diamond // Appl. Phys. A. 2009. V. 97. P. 543.

94. Bonse J., Rosenfeld A., Kruger J. Implications of Transient Changes of Optical and Surface Properties of Solids During Femtosecond Laser Pulse Irradiation to the Formation of Laser-Induced Periodic Surface Structures // Appl. Surf. Sci. 2011. V. 257. P. 5420.

95. Hohm S., Herzlieb M., Rosenfeld A. Kruger J., Bonse J. Femtosecond Laser-Induced Periodic Surface Structures on Silicon upon Polarization Controlled Two-Color Double-Pulse Irradiation // Opt. Express. 2015. V. 23. P. 61.

96. Емельянов В.И., Данилов П. А., Заярный Д. А., Ионин A. A., Кудряшов С. И., Макаров С. В., Руденко А. А., Шикунов Д. И., Юровских В. И. Термокавитационная неустойчивость расплава вблизи порога откольно фемтосекундной лазерной абляции кремния и образование микрокороны // Письма в ЖЭТФ. 2014. Т. 100. В. 3. С. 163.

97. Borowiec A., Mackenzie M., Weatherly G. C., Haugen H. K. Transmission and Scanning Electron Microscopy Studies of Single Femtosecond – Laser-Pulse Ablation of Silicon // Appl. Phys. A. 2003. V. 76. P. 201.

98. Crawford T.H., Yamanaka J., Botton G. A., Haugen H. K. High-Resolution Observations of an Amorphous Layer and Subsurface Damage Formed by Femtosecond Laser Irradiation of Silicon // J. Appl. Phys. 2008. V. 103. P. 053104.

99. Borowiec A., Mackenzie M., Weatherly G. C., Haugen H. K. Femtosecond Laser Pulse Ablation of GaAs and InP: Studies Utilizing Scanning and Transmission Electron Microscopy // Appl. Phys. A. 2004. V. 77. P. 411.

100. 100. Couillard M., Borowiec A., Haugen H. K., Preston J. S., Griswold E. M., Botton G. A. Subsurface Modifications in Indium Phosphide Induced by Single and Multiple Femtosecond Laser Pulses: A Study on the Formation of Periodic Ripples // J. Appl. Phys. 2007. V. 101. P. 033519.

101. 101. Bonse J. All-Optical Characterization of Single Femtosecond Laser-Pulse-Induced Amorphization in Silicon // Appl. Phys. A. 2006. V. 84. P. 63.

102. 102. Eizenkop J., Avrutsky I., Auner G., Georgiev D. G., Chaudhary V. Single Pulse Excimer Laser Nanostructuring of Thin Silicon Films: Nanosharp Cones Formation and a Heat Transfer Problem // J. Appl. Phys. 2007. V. 101. P. 094301.

103. 103. Bonse J., Baudach S., Kruger J., Kautek, Lenzner M. Femtosecond Laser Ablation of Silicon-Modification Thresholds and Morphology // Appl. Phys. A. 2002. V. 74. P. 19.

104. 104. Kelly R., Miotello A. Contribution of Vaporization and Boiling to Thermal-Spike Sputtering by Ions or Laser Pulses // Phys. Rev. E. 1999. V. 60. P. 2616.

105. 105. Ашитков С.И., Иногамов, Н.А., Жаховский В. В., Эмиров Ю. Н., Агранат М. Б., Олейник И. И., Анисимов С. И., Фортов В. Е. Образование нанополостей в поверхностном слое алюминиевой мишени при воздействии фемтосекундных лазерных импульсов // Письма в ЖЭТФ. 2012. Т. 95. В. 4. С. 192.

106. 106. Ромашевский С.А., Ашитков С. И., Дмитриев А. С. Формирование упорядоченных нано- и мезоструктур в кремнии при однократном воздействии фемтосекундного лазерного импульса в различных внешних средах // Письма в ЖТФ. 2016. Т. 42. В. 15. С. 78.

107. 107. Romashevskiy S.A., Ashitkov S. I., Agranat M. B. Surface Microcavities at Nanoscale Depths Produced by Ultrafast Laser Pulses // Appl. Phys. Lett. 2016. V. 109. P. 261601.

108. 108. Agranat M.B., Anisimov S. I., Ashitkov S. I., Zhakhovskii V. V., Inogamov N. A., Nishihara K., Petrov Yu.V., Fortov V. E., Khokhlov V. A. Dynamics of Plume and Crater Formation // Appl. Surf. Sci. 2007. V. 253. P. 6276.

109. 109. Gudde J., Hohlfeld J., Muller J. G., Matthias E. Damage Threshold Dependence on Electron-Phonon Coupling in Au and Ni Films // Appl. Surf. Sci. 1998. V. 127–129. P. 40.

110. 110. Inogamov N.A., Petrov Yu.V., Khokhlov V. A., Anisimov S. I., Zhakhovskii V. V., Ashitkov S. I., Komarov P. S., Agranat M. B., Fortov V. E., Migdal K. P., Il’nitskii D.K., Emirov Yu. N. The Effect of an Ultrashort Laser Pulse on Metals: Two-Temperature Relaxation, Foaming of the Melt, and Freezing of the Disintegrating Nanofoams // J. Opt. Technology. 2014. V. 81. № 5. P. 233.

111. 111. Murphy R.D., Torralva B, Yalisove S. M. The Role of an Interface on Ni Film Removal and Surface Roughness after Irradiation by Femtosecond Laser Pulses // Appl. Phys. Lett. 2013. V. 102. P. 181602.

112. 112. Veiko V.P., Konov V. I. Fundamentals of Laser-Assisted Micro – and Nanotechnologies. Switzerland: Springer, 2014. V. 195. P. 201.

113. 113. Bovatsek J., Tamhankar A., Patel R. S., Bulgakova N. M., Bonse J. Thin Film Removal Mechanisms in ns-Laser Processing of Photovoltaic Materials // Thin Solid Films. 2010. V. 518. P. 2897.

114. 114. Compaan A.D., Matulionis I., Nakade S. Laser Scribing of Polycrystalline Thin Films // Opt. Laser Eng. 2000. V. 34. P. 15.

115. 115. Gower M. C. Industrial Applications of Laser Micromachining // Opt. Express. 2000. V. 7. P. 56.

116. 116. Grohe A., Knorz A., Nekarda J., Jager U., Mingirulli N., Preu R. Novel Laser Technologies for Crystalline Silicon Solar Cell Production // Proc. SPIE. 2009. V. 7202. P. 72020.

117. 117. Kray D., Hopman S., Spiegel A., Richerzhagen B., Willeke G. P. Study on the Edge Isolation of Industrial Silicon Solar Cells with Waterjet-Guided Laser // Sol. Energy Mater Sol. Cells. 2007. V. 91. P. 1638.

118. 118. Grohe A., Preu R., Glunz S. W., Willeke G. P. Laser Applications in Crystalline Silicon Solar Cell Production // Proc. SPIE. 2006. V. 6197. P. 619717.

119. 119. Van Kerschaver E., Beaucarne G. Back-Contact Solar Cells: A Review // Prog. Photovolt: Res. Appl. 2006. V. 14. P. 107.

120. 120. Schneiderlochner E., Preu R., Ludemann R., Glunz S. W. Laser-Fired Rear Contacts for Crystalline Silicon Solar Cells // Prog. Photovolt: Res. Appl. 2002. V. 10. P. 29.

121. 121. Sugianto A., Bovatsek J., Wenham S., Tjahjono B., Guangqi X., Yu Y., Hallam B., Xue B., Kuepper N., Chong C. M., Patel R. 18.5% Laser-Doped Solar Cell on CZ p-Type Silicon // Proc. the 35th IEEE Photovoltaic Specialists Conference. 2010. P. 689.

122. 122. Blecher J.J., Palmer T. A., Reutzel E. W., Debroy T. Laser- Silicon Interaction for Selective Emitter Formation in Photovoltaics. I. Numerical Model and Validation // J. Appl. Phys. 2012. V. 112. P. 114906.

123. 123. Blecher J.J., Palmer T. A., Reutzel E. W., Debroy T. Laser- Silicon Interaction for Selective Emitter Formation in Photovoltaics. II. Model Applications // J. Appl. Phys. 2012. V. 112. P. 114907.

124. 124. Geier M., Eberstein M., Grie?mann H., Partsch U., Volkel L., Bohme R., Mann G., Bonse J., Kruger J. Impact of Laser Treatment on Phosphoric Acid Coated Multicrystalline Silicon PV-Wafers // 26th European Photovoltaic Solar Energy Conf. 2011. P. 1243.

125. 125. Rana V., Zhang Z., Lazik C., Mishra R., Weidman T., Eberspacher C. Investigations into Selective Removal of Silicon Nitride Using Laser for Crystalline Solar Cells // 23rd European Photovoltaic Solar Energy Conference. 2008. P. 1942.

126. 126. Correia S.A.G.D., Lossen J., Wald M., Neckermann K., Bahr M. Selective Laser Ablation of Dielectric Layers // 22nd European Photovoltaic Solar Energy Conference. 2007. P. 1061.

127. 127. Knorz A., Peters M., Grohe A., Harmel C., Preu R. Selective Laser Ablation of SiNx Layers on Textured Surfaces for Low Temperature Front Side Metallizations // Prog. Photovolt: Res. Appl. 2009. V. 17. P. 127.

128. 128. Schoonderbeek A., Schutz V., Haupt O., Stute U. Laser Processing of Thin Films for Photovoltaic Applications // J. Laser Micro Nanoen. 2010. V. 5. P. 248.

129. 129. Hermann S., Dezhdar T., Harder N.-P., Brendel R., Seibt M., Stroj S. Impact of Surface Topography and Laser Pulse Duration for Laser Ablation of Solar Cell Front Side Passivating SiNx Layers // J. Appl. Phys. 2010. V. 108. P. 114514.

130. 130. Bahr M., Heinrich G., Stolberg K.-P., Wutherich T., Bohme R. Ablation of Dielectrics Without Substrate Damage Using Ultra-Short-Pulse Laser Systems // 25th European Photovoltaic Solar Energy Conference And Exhibition. 2010. P. 2490.

131. 131. Heinrich G., Bahr M., Stolberg K., Wutherich T., Leonhardt M., Lawerenz A. Investigation of Ablation Mechanisms for Selective Laser Ablation of Silicon Nitride Layers // Energy Procedia. 2011. V. 8. P. 592.

132. 132. Stolberg K., Friedel S., Kremser B., Leitner M., Atsuta Y. Ablation of SiN Passivation Layers on Photovoltaic Cells with Femtosecond Laser Source // J. Laser Micro Nanoen. 2010. V. 5. P. 125.

133. 133. Rublack T., Seifert G. Femtosecond Laser Delamination of Thin Transparent Layers from Semiconducting Substrates // Opt. Mater. Express. 2011. V. 1. P. 543.

134. 134. Bonse J., Mann G., Kruger J., Marcinkowski M., Eberstein M. Femtosecond Laser-Induced Removal of Silicon Nitride Layers From Doped and Textured Silicon Wafers Used in Photovoltaics // Thin Solid Films. 2013. V. 542. P. 420.

135. 135. Moreno M., Boubekri R. Study of the Effects of Different Fractions of Large Grains of mc-Si: H: F Films on the Infrared Absorption on Thin Film Solar Cells // Sol. Cells. 2012. V. 100. P. 16.

136. 136. Nakada T., Shirakata S. Impacts of Pulsed-Laser Assisted Deposition on CIGS Thin Films and Solar Cells // Sol. Cells. 2011. V. 95. P. 1463.

137. 137. Lemke A., Ashkenasi D., Eichler H. J. Picosecond Laser Induced Selective Removal of Functional Layers on CIGS Thin Film Solar Cells // Physics Procedia. 2013. V. 41. P. 769.

138. 138. Wei Z., Bobbili P. R., Senthilarasu S., Shimell T., Upadhyaya H. M. Design and Optimisation of Process Parameters in an In-Line CIGS Evaporation Pilot System // Surf. Coat. Technol. 2014. V. 241. P. 159.

139. 139. Gloeckler M., Sites J. R. Band-Gap Grading in Cu(In, Ga)Se2 Solar Cells // J. Phys. Chem. Solids. 2005. V. 66. P. 1891.

140. 140. Gorji N.E., Reggiani U., Sandrolini L. A Simple Model for the Photocurrent Density of a Graded Band Gap CIGS Thin Film Solar Cell // Sol. Energy. 2012. V. 86. P. 920.

141. 141. Celen S. Laser Micro-Machined Semi-Slinky Like MEMS Structures: Novel Interface Coolers // Opt. Laser Technol. 2012. V. 44. P. 2043.

142. 142. Chang G., Tu Y. The Threshold Intensity Measurement in the Femtosecond Laser Ablation by Defocusing // Opt. Lasers Eng. 2012. V. 50. P. 767.

143. 143. Kudrius T., Slekys G., Juodkazis S. Surface-Texturing of Sapphire by Femtosecond Laser Pulses for Photonic Applications // J. Phys. D Appl. Phys. 2010. V. 43. P. 145501.

144. 144. Chang T.L., Tsai T. K., Yang H. P., Huang J. Z. Review of the Wafer Stage for Nanoimprint Lithography // Microelectron. Eng. 2012. V. 98. P. 684.

145. 145. Nayak B.K., Gupta M. C. Self-Organized Micro/Nano Structures in Metal Surfaces by Ultrafast Laser Irradiation // Opt. Lasers Eng. 2010. V. 48. P. 940.

146. 146. Chang C.W., Chen C. Y., Chang T. L., Ting C. J., Wang C. P., Chou C. P. Sapphire Surface Patterning Using Femtosecond Laser Micromachining // Appl. Phys. A. 2012. V. 109. P. 441.

147. 147. Mubarok F., Espallargas N. Tribological Behaviour of Thermally Sprayed Silicon Carbide Coatings // Tribol. Int. 2015. V. 85. P. 56.

148. 148. Chen C.-Y., Chang T.-L. Multilayered Structuring of Thin-Film PV Modules by Ultrafast Laser Ablation // Microelectron. Eng. 2015. V. 143. P. 41.

149. 149. Hubler A.C., Schmidt G. C., Kempa H., Reuter K., Hambsch M., Bellmann M. Three-Dimensional Integrated Circuit Using Printed Electronics // Org. Electron. 2011. V. 12. P. 419.

150. 150. Azarova N.A., Owen J. W., Mclellan C. A., Grimminger M. A., Chapman E. K., Anthony J. E., Jurshescu O. D. Fabrication of Organic Thin-Film Transistors by Spray-Deposition for Low-Cost, Large-Area Electronics // Org. Electron. 2010. V. 11. P. 1960.

151. 151. Gallais L., Bergeret E., Wang B., Guerin M., Benevent M. Ultrafast Laser Ablation of Metal Films on Flexible Substrates // Appl. Phys. A. 2014. V. 115. P. 177.

152. 152. Morgan T.D., Anderson D. P., Kim P. Solderability Assessment via Sequential Electrochemical Reduction Analysis // J. Appl. Electrochem. 1994. V. 24. P. 18.

153. 153. Satta A., Shamiryan D., Baklanov M. R., Whelan C. M., Le Q. T., Beyer G. P., Vantomme A., Maex K. Vantomme A., Maex K. The Removal of Copper Oxides by Ethyl Alcohol Monitored in situ by Spectroscopic Ellipsometry // J. Electrochem. Soc. 2003. V. 150. № 5. P. 300.

154. 154. Changho S., Daehwan A., Dongsik K. Removal of Oxides from Copper Surface Using Femtosecond and Nanosecond Pulsed Lasers // Appl. Surf. Sci. 2015. V. 349. P. 361.

155. 155. Haight R., Wagner A., Longo P., Lim D. Femtosecond Laser Ablation and Deposition of Metal Films on Transparent Substrates with Applications in Photomask Repair // Proc. SPIE. 2005. V. 5714. P. 24.

156. 156. Zhao Q.Z., Qiu J. R., Jiang X. W., Dai E. W., Zhou C. H., Zhu C. S. Direct Writing Computer-Generated Holograms on Metal Film by an Infrared Femtosecond Laser // Opt. Express. 2005. V. 13. P. 2089.

157. 157. Park M., Chon B. H., Kim H. S., Jeoung S. C., Kim D., Lee J. I., Chu H. Y., Kim H. R. Ultrafast Laser Ablation of Indium Tin Oxide Thin Films for Organic Light- Emitting Diode Application // Opt. Lasers Eng. 2006. V. 44. P. 138.

158. 158. Dowding C.F., Lawrence J. Ablation Debris Control by Means of Closed Thick Film Filtered Water Immersion // J Eng. Manuf. 2010. V. 224. P. 753.

159. 159. Zoppel S., Huber H., Reider G. A. Selective Ablation of Thin Mo and TCO Films with Femtosecond Laser Pulses for Structuring Thin Film Solar Cells // Appl. Phys. A. 2007. V. 89. P. 161.

160. 160. Dong Y., Sakata H., Molian P. Femtosecond Pulsed Laser Ablation of Diamond-Like Carbon Films on Silicon // Appl. Surf. Sci. 2005. V. 252. P. 352.

161. 161. Banks D.P., Grivas C., Mills J. D., Eason R. W., Zergioti L. Nanodroplets Deposited in Microarrays by Femtosecond Ti: Sapphire Laser-Induced Forward Transfer // Appl. Phys. Lett. 2006. V. 89. P. 193107.

162. 162. Klini A., Loukakos P. A., Gray D., Manousaki A., Fotakis C. Laser Induced Forward Transfer of Metals by Temporally Shaped Femtosecond Laser Pulses // Opt. Express. 2008. V. 16. P. 11300.

163. 163. Beyer S., Tornari V., Gornicki D. Comparison of Laser Induced Front – and Rear Side Ablation // Proc SPIE. 2003. V. 5063. P. 202.

164. 164. Venkatakrishnan K., Ngoi B. K.A., Stanley P., Lim L. E.N., Tan B., Sivakumar N. R. Laser Writing Techniques for Photomask Fabrication Using a Femtosecond Laser // Appl. Phys. A. 2002. V. 74. P. 493.

165. 165. Wenjun W., Xuesong M., Gedong J., Kedian W., Chengjuan Y. Effect of Film Properties on the Material Removing Characteristics in Femtosecond Laser Rear-Side Ablation of Chromium Film // Opt. Laser Tech. 2012. V. 44. P. 153.

166. 166. Ando E., Suzuki S. Optical and Mechanical Properties of Cr and CrNx Films by DC Magnetron Sputtering // J. Non-Crystalline Solids. 1997. V. 218. P. 68.

167. 167. Dini J. W. Electrodeposition: The Materials Science of Coatings and Substrates. N.Y.: Noyes Publications-Park Ridge, 1993. P. 367.

168. 168. Domke М., Nobile L., Rapp S., Eiselen S., Sotrop J., Huber H. P., Schmidt M. Understanding Thin Film Laser Ablation: The Role of the Effective Penetration Depth and the Film Thickness // Physics Procedia. 2014. V. 56. P. 1007.

Система Orphus

Загрузка...
Вверх