From Panopticon to Panspectron: Digital Data and Transformation of Surveillance Regimes

 
PIIS013216250002782-3-1
DOI10.31857/S013216250002782-3
Publication type Article
Status Published
Authors
Occupation: Associate Professor, Head Department of Applied and Industrial Sociology, St. Petersburg State University
Affiliation: St. Petersburg State University
Address: Russian Federation
Journal nameSotsiologicheskie issledovaniia
EditionIssue 11
Pages17-26
Abstract

The proliferation of digital data is a new challenge to sociological knowledge, requiring not only new methods, but also revision of conceptual sociological optics. Based on the idea of the role of observation tools in the development of scientific knowledge, the article focuses on the transition from the regime of panoptic surveillance as the leading principle of management and organization of disciplinary power in the social systems of modernity to the regime of fluid surveillance which takes place in the context of digital technology development and allows monitoring and predicting various social patterns based on unstructured data. Main types of surveillance regimes opposite to the panopticon are considered. The concept of synopticon identified by T. Mathiesen presupposes the observation of the few by the many typical for mass media. The concept of social surveillance presupposes the observation of each other through social media sites. These surveillance regimes characterize social interaction mediated by digital technologies and can be described by the metaphor of panspectron proposed by M. DeLanda. It is concluded that in the context of surveillance regimes transformation, effective use of the research capabilities provided by digital data is possible if the epistemological concept of observation in the social sciences is revised.

Keywordsdigital data, panopticon, panspectron, liquid surveillance, synopticon, social surveillance, social life of methods
AcknowledgmentThe paper is funded by Russian Foundation for Basic Research (project 18-013-00726 А).
Received12.12.2018
Publication date12.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 211

Readers community rating: votes 0

1. Bauman 3. Globalizatsiya. Posledstviya dlya cheloveka i obschestva. M.: Ves' Mir, 2004. [Bauman Z. (2004) Globalization. Consequences for Human and Society. Moscow: Ves’ Mir. (In Russ.)]

2. Delanda M. Vojna v ehpokhu razumnykh mashin. M.: Institut obschegumanitarnykh issledovanij, 2014. [DeLanda M. (2014) War in the Age of Intelligent Machines. Moscow: Institut obshchegumanitarnykh issledovaniy. (In Russ.)]

3. Devyatko I.F. Onlajn issledovaniya i metodologiya sotsial'nykh nauk: novye gorizonty, novye (i ne stol' novye) trudnosti // Onlajn issledovaniya v Rossii 2.0. M.: RITs «Severo-Vostok», 2010. S. 17–30. [Devyatko I.F. (2010) Online Research and Methodology of Social Sciences: New Horizons, New (and Not So New) Difficulties. In: Online Research in Russia 2.0. Moscow: RITs «Severo-Vostok»: 17–30. (In Russ.)]

4. Dudina V.I. Tsifrovye dannye – potentsial razvitiya sotsiologicheskogo znaniya // Sotsiologicheskie issledovaniya. 2016. № 9. S. 21–30. [Dudina V.I. (2016) Digital Data Potentialities for Development of Sociological Knowledge. Sotsiologicheskie issledovaniya [Sociological Studies]. No. 9: 21–30. (In Russ.)]

5. Kitchin R. Bol'shie dannye, novye ehpistemologii i smena paradigm // Sotsiologiya: metodologiya, metody, matematicheskoe modelirovanie. 2017. № 44. C. 111–152. [Kitchin R. (2017) Big Data, New Epistemologies and Paradigm Shifts. Sotsiologiya: metodologiya, metody, matematicheskoe modelirovanie [Sociology: Methodology, Methods, Mathematical Modeling]. No. 44: 111–152. (In Russ.)]

6. Fuko M. Nadzirat' i nakazyvat'. Rozhdenie tyur'my. M.: Ad Marginem, 1999. [Foucault M. (1999) Discipline and Punish. The Birth of the Prison. Moscow: Ad Marginem. (In Russ.)]

7. Boullier D. (2016) Big Data Challenges for the Social Sciences: From Society and Opinion to Replications. arXiv.org. July, 18. URL: https://arxiv.org/abs/1607.05034 (accessed 15.04.2018).

8. Burrows R., Savage M. (2014) After the Crisis? Big Data and the Methodological Challenges of Empirical Sociology. Big Data & Society. Vol. 1(1): 1–6.

9. Collins R. (1994) Why the Social Sciences Won’t Become High-consensus, Rapid Discovery Sciences. Sociological Forum. Vol. 9(2): 155–77.

10. Corti L., Fielding N. (2016) Opportunities from the Digital Revolution: Implications for Researching, Publishing, and Consuming Qualitative Research. SAGE Open. Vol. 6(4): 1–13.

11. DeLanda M. (1991) War in the Age of Intelligent Machines. New York: Zone Books.

12. Doyle A. (2011) Revisiting the Synopticon: Reconsidering Mathiesen’s ‘the Viewer Society’ in the Age of Web 2.0. Theoretical Criminology. Vol. 15(3): 283–299.

13. Gibson W. (2010) Google’s Earth. New York Times. August, 31. URL: http://www.nytimes.com/2010/09/01/opinion/01gibson.html (accessed 15.04.2018). Golder S., Macy M. (2014) Digital Footprints: Opportunities and Challenges for Online Social Research. Annual Review of Sociology. Vol. 40: 129–152.

14. Halford S., Savage M. (2017) Speaking Sociologically with Big Data: Symphonic Social Science and the

15. Future for Big Data Research. Sociology. June, 2: 1–18.

16. Kitchin R. (2014) Big Data, New Epistemologies and Paradigm Shifts. Big Data & Society. Vol. 1(1): 1–12.

17. Law J. (2009) Seeing Like a Survey. Cultural Sociology. Vol. 3(2): 239–256.

18. Law J., Savage M., Ruppert E. (2011) The Double Social Life of Methods. CRESC Working Paper Series, Working Paper No. 95, Open University, March: 3–18.

19. Law J., Urry J. (2004) Enacting the Social. Economy and Society. Vol. 33(3): 390–410.

20. Lee R. (2000) Unobtrusive Methods in Social Research. Buckingham: Open University Press.

21. Lewis K. (2015) Three Fallacies of Digital Footprints. Big Data & Society. July – December: 1–4.

22. Lyon D. (2010) Liquid Surveillance: the Contribution of Zygmunt Bauman to Surveillance Studies. International Political Sociology. Vol. 4: 325–338.

23. Lyon D., Bauman Z. (2013) The Liquid Surveillance: A Conversation. Oxford: Wiley.

24. Mann S., Nolan J., Wellman B. (2003) Sousveillance: Inventing and Using Wearable Computing Devices for Data Collection in Surveillance Environment. Surveillance & Society. Vol. 1(3): 331–355.

25. Marwick A. (2012) The Public Domain: Social Surveillance in Everyday Life. Surveillance and Society. Vol. 9(4): 378–393.

26. Mathiesen T. (1997) The Viewer Society: Michel Foucault's 'Panopticon' Revisited. Theoretical Criminology. Vol. 1(2): 215–234.

27. Mathiesen T. (2013) Towards a Surveillant Society: the Rise of Surveillance Systems in Europe. Hampshire, UK: Waterside Press.

28. McFarland D., Lewis K., Goldberg A. (2016) Sociology in the Era of Big Data: the Ascent of Forensic Social Science. The American Sociologist. Vol. 47(1): 12–35.

29. Osborne T., Rose N. (1999) Do the Social Sciences Create Phenomena? The Example of Public Opinion Research. British Journal of Sociology. Vol. 50(3): 367–396.

30. Poster M. (1995) The Second Media Age. Cambridge: Polity Press.

31. Robinson R. (1948) Progress in Mass Observation. International Journal of Opinion and Attitude Research. Vol. 2: 369–372.

32. Ruppert E., Law J., Savage M. (2013) Reassembling Social Science Methods: the Challenge of Digital Devices. Theory, Culture and Society. Vol. 30(4): 22–46.

33. Savage M., Burrows R. (2014) After the Crisis? Big Data and the Methodological Challenges of Empirical Sociology. Big Data & Society. April – June: 1–6.

34. Savage M., Burrows R. (2007) The Coming Crisis of Empirical Sociology. Sociology. Vol. 41(5): 885–899.

35. Tokunaga R.S. (2011) Social Networking Site or Social Surveillance Site? Understanding the Use of Interpersonal

36. Electronic Surveillance in Romantic Relationships. Computers in Human Behavior. Vol. 27(2): 705–713.

37. Willcock H. (1943) Mass Observation. American Journal of Sociology. Vol. 48: 445–446.

Система Orphus

Loading...
Up