Поиск генов, связанных с развитием септического шока, методами прямой генетики

 
Код статьиS102872210002378-0-1
DOI10.31857/S102872210002378-0
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация: Нижегородский государственный университет им. Н.И. Лобачевского
Аффилиация: Нижегородский Государственный Университет им. Н.И. Лобачевского
Аффилиация: Нижегородский Государственный Университет им. Н.И. Лобачевского
Аффилиация:
Институт молекулярной биологии им. В.А. Энгельгардта РАН
МГУ им. М.В. Ломоносова
Аффилиация:
Институт молекулярной биологии им. В.А. Энгельгардта РАН
МГУ им. М.В. Ломоносова
Аффилиация:
Институт молекулярной биологии им. В.А. Энгельгардта РАН
МГУ им. М.В. Ломоносова
Аффилиация: Нижегородский Государственный Университет им. Н.И. Лобачевского
Аффилиация:
Нижегородский Государственный Университет им. Н.И. Лобачевского
Медицинский Факультет Шарите
Аффилиация:
Нижегородский Государственный Университет им. Н.И. Лобачевского
Институт молекулярной биологии им. В.А. Энгельгардта РАН
МГУ им. М.В. Ломоносова
Название журналаРоссийский иммунологический журнал
ВыпускТом 12 Номер 4
Страницы579-585
Аннотация

Большинство известных генов, определяющих предрасположенность к наследственным заболеваниям, несут рецессивные мутации и поэтому фенотипически проявляются в гомозиготном состоянии. Если же мутация сцеплена с Х-хромосомой, то тогда она проявляется только у особей мужского пола. Главный источник новой информации о таких мутациях у человека – генетический анализ семей. Альтернативным подходом к поиску мутаций является полногеномный мутагенез в модельных животных, с последующим фенотипическим отбором особей, предрасположенных или устойчивых к выбранному типу патологий. В ходе комплексного проекта по поиску мутаций, внесенных в геном мыши нитрозомочевиной, нами были отобраны несколько линий мышей, устойчивых к летальной токсичности, вызываемой инъекцией липополисахарида и Д-галактозамина. В настоящей работе приводится характеристика одной такой новой линии мышей.

Ключевые словаполногеномный мутагенез в мышах, цитокины, фактор некроза опухоли, воспаление, септический шок
Источник финансированияРабота авторов поддержана грантом Российского Фонда Фундаментальных Исследований № 17–00–00327 и в рамках государственного задания ФАНО России № 01201363822.
Получено31.01.2019
Дата публикации31.01.2019
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 1146

Оценка читателей: голосов 0

1. Erickson R.P., Mitchison N. A. The low frequency of recessive disease: insights from ENU mutagenesis, severity of disease phenotype, GWAS associations, and demography: an analytical review. Journal of Applied Genetics 2014, 55(3), 319–327.

2. Bin Dhuban K., Piccirillo C. A. The immunological and genetic basis of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Current Opinion in Allergy and Clinical Immunology 2015, 15(6), 525–532.

3. Perryman L. E. Molecular Pathology of Severe Combined Immunodefi ciency in Mice, Horses, and Dogs. Veterinary Pathology 2004, 41(2), 95–100.

4. Russell L. B., Montgomery C. S. Supermutagenicity of ethylnitrosourea in the mouse spot test: Comparisons with methylnitrosourea and ethylnitrosourethane. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1982, 92(1), 193–204.

5. Hitotsumachi S., Carpenter D. A., Russell W. L. Doserepetition increases the mutagenic eff ectiveness of Nethyl-N-nitrosourea in mouse spermatogonia. Proceedings of the National Academy of Sciences 1985, 82(19), 6619.

6. Efimov G. A., Kruglov A., Khlopchatnikova Z. V., Rozov F. N., Mokhonov V., Rose-John S., Scheller J., Gordon S., Stacey M., Drutskaya M. S., Tillib S. V., Nedospasov S. A. Cell-type–restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proceedings of the National Academy of Sciences 2016, 113(11), 3006–3011.

7. Shakhov A. N., Collart M. A., Vassalli P., Nedospasov S. A., Jongeneel C. V. Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages. J Exp Med 1990, 171(1), 35–47.

8. Rietschel E. T., Kirikae T., Schade F. U., Mamat U., Schmidt G., Loppnow H., Ulmer A. J., Zahringer U., Seydel U., Di Padova F. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 1994, 8(2), 217–225.

9. Kuhla A., Eipel C., Siebert N., Abshagen K., Menger M. D., Vollmar B. Hepatocellular apoptosis is mediated by TNFα-dependent Fas/FasLigand cytotoxicity in a murine model of acute liver failure. Apoptosis 2008, 13(12), 1427–1438.

10. Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal eff ect of endotoxin. Science 1985, 229(4716), 869–871.

11. Tracey K. J., Fong Y., Hesse D. G., Manogue K. R., Lee A. T., Kuo G. C., Lowry S. F., Cerami A. Anti-cachectin/ TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 1987, 330(6149), 662–664.

12. Mohler K.M., Torrance D. S., Smith C. A., Goodwin R. G., Stremler K. E., Fung V. P., Madani H., Widmer M. B. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol 1993, 151(3), 1548–1561.

13. Ashkenazi A., Marsters S. A., Capon D. J., Chamow S. M., Figari I. S., Pennica D., Goeddel D. V., Palladino M. A., Smith D. H. Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc Natl Acad Sci U S A 1991, 88(23),10535–10539.

14. Rutschmann S., Hoebe K., Zalevsky J., Du X., Mann N., Dahiyat B. I., Steed P., Beutler B. PanR1, a dominant negative missense allele of the gene encoding TNFalpha (Tnf), does not impair lymphoid development. J Immunol 2006, 176(12), 7525–7532.

15. Pfeffer K., Matsuyama T., Kundig T. M., Wakeham A., Kishihara K., Shahinian A., Wiegmann K., Ohashi P. S., Kronke M., Mak T. W. Mice defi cient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 1993, 73(3), 457–467.

16. Rothe J., Lesslauer W., Lotscher H., Lang Y., Koebel P., Kontgen F., Althage A., Zinkernagel R., Steinmetz M., Bluethmannv H. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 1993, 364(6440), 798–802.

17. Neumann B., Luz A., Pfeffer K., Holzmann B. Defective Peyer’s patch organogenesis in mice lacking the 55-kD receptor for tumor necrosis factor. J Exp Med 1996, 184(1), 259–264.

18. Kuprash D. V., Tumanov A., Liepinsh D. J., Koroleva E. P., Drutskaya M. S., Kruglov A. A., Shakhov A. N., Southon E., Murphy W. J., Tessarollo L., Grivennikov S. I., Nedospasov S. A. Novel tumor necrosis factor-knockout mice that lack Peyer’s patches. European Journal of Immunology 2005, 35(5), 1592–1600.

Система Orphus

Загрузка...
Вверх