Cybersickness in virtual reality: key factors and sensory integration

 
PIIS020595920007882-6-1
DOI10.31857/S020595920007882-6
Publication type Article
Status Published
Authors
Occupation: Leading researcher
Affiliation: Psychology Department, Moscow Lomonosov State University
Address: Moscow, 11 Mokhovaya st.
Occupation: User researcher
Affiliation: UserLytics Corp., Foster City, California, USA
Address: United States, Foster City
Journal namePsikhologicheskii zhurnal
EditionVolume 41 issue 1
Pages56-64
Abstract

The article provides an overview of cybersickness, also known as a simulator sickness. Phenomenology of cybersickness often accompanies the use of virtual or augmented reality systems. The factors that are supposedly contributing to the emergence of cybersickness, including the technical parameters of virtual reality systems, the individual characteristics of particular users of such systems and the specifics of the tasks they perform, including the phenomena of presence and multitasking, are analyzed. As a promising direction in the search for one of the probable root causes of cybersickness, the issues related to the psychological mechanisms of the integration of multisensor information are discussed in detail. This research area has been actively developing over the past two decades and is associated with the appearance (including through the use of the virtual reality methodology) of sensory illusions (visual, auditory, tactile, kinesthetic) and with the registration of human behavior in situations when the body image seems to be changed. The corresponding phenomena have already received the metaphorical names “out-of-body experience”, or “rubber arm”. Specialists in cognitive sciences, anatomy and neurophysiology of the brain, neuropsychology, philosophy, cyberpsychology, computer science in general and computer graphics in particular, as well as medical prosthetics are interested in solving relevant research problems. Based on available sources in which attempts are made to fix the center of multisensory integration, suggestions are made about its localization in the brain. Promising measures aimed at reducing the likelihood of cybersickness are being considered.

KeywordsVirtual reality, immersion, simulator disorder, motion sickness, cybersickness, presence, integration of sensor signals, out-of-body experience
AcknowledgmentThe study was supported by the Russian Science Foundation, project № 18-18-00365, “Digital socialization in the cultural-historical perspective: intragenerational and intergenerational analysis”, Moscow Lomonosov State University.
Received11.12.2019
Publication date27.12.2019
Number of characters18286
Cite  
100 rub.
When subscribing to an article or issue, the user can download PDF, evaluate the publication or contact the author. Need to register.

Number of purchasers: 2, views: 2096

Readers community rating: votes 0

1. Averbuh N.V. Psihologicheskie aspekty fenomena prisutstvija v virtual'noj srede // Voprosy psihologii. 2010. № 5. P. 105–113. (In Russian)

2. Averbuh N.V., Shherbinin A.A. Fenomen prisutstvija i ego vlijanie na jeffektivnost' reshenija intellektual'nyh zadach v sredah virtual'noj real'nosti // Psihologija. Zhurnal Vysshej shkoly jekonomiki. 2011. V. 8. № 4. P. 102–119. (In Russian)

3. Arhitektura virtual'nyh mirov / Eds. M.B. Ignat'ev, A.V. Nikitin, A.E. Vojskunskij. St. Petersburg: Izd-vo GUAP, 2009. (In Russian)

4. Velichkovskij B.B. Psihologicheskie faktory vozniknovenija chuvstva prisutstvija v virtual'nyh sredah // Nacional'nyj psihologicheskij zhurnal. 2014. № 3(15). P. 31–38. (In Russian)

5. Vojskunskij A.E. Psihologija i Internet. Moscow: Akropol', 2010. (In Russian)

6. Kovalev A.I., Klimova O.A. Diagnostika ustojchivosti vestibuljarnoj funkcii sportsmenov s primeneniem tehnologii virtual'noj real'nosti // Sportivnyj psiholog. 2017. V. 46. № 3. P. 4–9. (In Russian)

7. Kovalev A.I., Men'shikova G.Ja., Klimova O.A., Barabanshhikova V.V. Soderzhanie professional'noj dejatel'nosti kak faktor uspeshnosti primenenija tehnologij virtual'noj real'nosti // Jeksperimental'naja psihologija. 2015. V. 8. № 2. P. 45–59. (In Russian)

8. Perepelkina O.S., Arina G.A., Nikolaeva V.V. Telesnye illjuzii: fenomenologija, mehanizmy, jeksperimental'nye modeli // Psihologicheskie issledovanija. 2014. V. 7. № 38. URL: http://psystudy.ru/index.php/num/2014v7n38/1068-perepelkina38.html (accessed 24.09.2019). (In Russian)

9. Smyslova O.V., Vojskunskij A.E. Kiberzabolevanie v sistemah virtual'noj real'nosti: fenomenologija i metody izmerenija // Psikhologicheskii zhurnal. 2019. V. 40. № 4. P. 85–94. (In Russian)

10. Açıkel B, Turhan U., Akbulut Y. Effect of Multitasking on Simulator Sickness and Performance in 3D Aerodrome Control Training // Simulation & Gaming. 2017. V. 49. № 1. P. 27–49.

11. Bauer A., Hagenburger J., Plank T., Busch V., Greenlee M.W. Mechanical pain thresholds and the rubber hand illusion // Frontiers in Psychology. 2018. V. 9. Article 712.

12. Blanke O. Multisensory brain mechanisms of bodily self-consciousness // Nature Reviews. Neuroscience. 2012. V. 13. № 8. P. 556–571.

13. Bockelman P., Lingum D. Factors of Cybersickness // Communications in Computer and Information Science: 19th International Conference, HCI International 2017 (Vancouver, BC, Canada, July 9–14, 2017) Proceedings, Part II. / C. Stephanidis (Ed.). Springer Publ. 2017. V. 714. P. 3–8. DOI: 10.1007/978-3-319-58753-0_1.

14. Botvinick M., Cohen J. Rubber hands “feel” touch that eyes see // Nature. 1998. Vol. 391. P. 756.

15. Brechet L., Grivaz P., Gauthier B., Blanke O. Common recruitment of angular gyrus in episodic autobiographical memory and bodily self-consciousness // Frontiers in Behavioral Neuroscience. 2018. V. 12. P. 270.

16. Ehrsson H.H. The experimental induction of out-of-body experiences // Science. 2007. Vol. 317. Issue 5841. P.1048.

17. Ehrsson H.H., Spence C., Passingham R.E. That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb // Science. 2004. Vol. 305. P. 875–877.

18. Hildebrandt J., Schmitz P., Valdez A.C., Kobbelt L., Ziefle M. Get Well Soon! Human Factors’ Influence on Cybersickness After Redirected Walking Exposure in Virtual Reality // Virtual, Augmented and Mixed Reality: Interaction, Navigation, Visualization, Embodiment, and Simulation. 10th Internat. Conference (July 15-20 2018, Las Vegas, USA) Proceedings, Part 1. Lecture Notes in Computer Science, Issue 10909 / J.Y.C. Chen and ‎G. Fragomeni (eds.). Springer Publ., 2018. P. 82–101.

19. Iskenderova A., Weidner F., Broll W. Drunk Virtual Reality Gaming: Exploring the Influence of Alcohol on Cybersickness // Proceedings of the Annual Symposium on Computer-Human Interaction in Play (Amsterdam, October 15–18, 2017). ACM. 2017. P. 561–572.

20. Joseph R. The neuropsychology of development hemispheric laterality, limbic language, and the origin of thought // Journal of Clinical Psychology. 1982. 38 (1). P. 4–33.

21. Keshavarz B., Hecht H., Zschutschke L. Intra-visual conflict in visually induced motion sickness // Displays- 2011. Vol. 32. № 4. P. 181–188.

22. Kim H.G., Baddar W.J., Lim H-T., Jeong H., Ro Y.M. Measurement of exceptional motion in VR video contents for VR sickness assessment using deep convolutional autoencoder // Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology (November 8–10, 2017, Gothenburg, Sweden). 2017. doi: 10.1145/3139131.3139137

23. LaViola J.J. A discussion of cybersickness in virtual environments // ACM SIGCHI Bulletin archive. 2000. V. 32. Is. 1. P. 47–56.

24. Lenggenhager B., Tadi T., Metzinger T., Blanke O. Video ergo sum: manipulating bodily selfconsciousness // Science. 2007. V. 317. Is. 5841. P. 1096–1099.

25. Limanowski J. What can body ownership illusion tell us about minimal phenomenal selfhood? // Frontiers in Human Neuroscience. 2014. V. 8. Article 946.

26. Liu Ch.-L. A study of detecting and combating cybersickness with fuzzy control for the elderly within 3D virtual stores // International Journal of Human-Computer Studies. 2014. V. 72. Is. 12. P. 796–804.

27. Melo M., Vasconcelos-Raposo J., Bessa M. Presence and cybersickness in immersive content: Effects of content type, exposure time and gender // Computers & Graphics. 2018. V. 71. P. 159–165.

28. Menshikova G.Y., Kovalev A.I., Klimova O.A., Barabanschikova V.V. The application of virtual reality technology to testing resistance to motion sickness // Psychology in Russia: State of the Art. 2017. V. 10. № 3. P. 151–164.

29. Mittelstaedt J., Wacker J., Stelling D. Effects of display type and motion control on cybersickness in a virtual bike simulator // Displays. 2018. V. 51. P. 43–50.

30. Munafo J., Diedrick M., Stoffregen T.A. The virtual reality head-mounted display oculus rift induces motion sickness and is sexist in its effects // Experimental Brain Research. 2016. V. 235. № 3. Р. 889–901.

31. Petkova V.I., Ehrsson H.H. If I Were You: Perceptual Illusion of Body Swapping // PLoS ONE. 2008. V. 3. № 12. P. e3832.

32. Pot-Kolder R., Veling W., Counotte J., van der Gaag M. Anxiety Partially Mediates Cybersickness Symptoms in Immersive Virtual Reality Environments // Cyberpsychology, Behavior, and Social Networking. 2018. V. 21. № 3. P. 187–193.

33. Pouke M., Tiiro A., LaValle S.M., Ojala T. Effects of Visual Realism and Moving Detail on Cybersickness // 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (Tuebingen/Reutlingen, Germany, 18–22 March 2018). IEEE Publ., 2018. P. 665–666.

34. Rebenitsch L., Owen C. Individual variation in susceptibility to cybersickness // 27th Annual ACM Symposium on User Interface Software and Technology, UIST 2014 (Honolulu, Oct 5–8 Oct, 2014). ACM. 2014. P. 309–317.

35. Rebenitsch L., Owen C. Review on cybersickness in applications and visual displays // Virtual Reality. 2016. Vol. 20 № 2. P. 101–125.

36. Rohde M., Di Luca M., Ernst M.O. The Rubber Hand Illusion: Feeling of Ownership and Proprioceptive Drift Do Not Go Hand in Hand // PLoS ONE. 2011. V.6 (6). P. e21659.

37. Rosa P.J., Morais D., Gamito P., Oliveira J., Saraiva T. The Immersive Virtual Reality Experience: A Typology of Users Revealed Through Multiple Correspondence Analysis Combined with Cluster Analysis Technique // Cyberpsychology, Behavior, and Social Networking. 2016. V. 19. № 3. P. 209–216.

38. Settgast V., Pirker J., Lontschar S., Maggale S., Gütl Ch. Evaluating Experiences in Different Virtual Reality Setups // 15th International Conference on Entertainment Computing (Sep. 2016, Wien, Austria). Lecture Notes in Computer Science. 2016. LNCS-9926. P. 115–125.

39. Shafer D.M., Carbonara C.P., Michael F. Korpi M.F. Factors Affecting Enjoyment of Virtual Reality Games: A Comparison Involving Consumer-Grade Virtual Reality Technology // Games for Health. 2019. V. 8. № 2. Р. 1–9.

40. Slater M., Spanlang B., Sanchez-Vives M.V., Blanke O. // First person experience of body transfer in virtual reality // PLoS ONE. 2010. V. 5(5). P. e10564.

41. Smith A.M., Messier C. Voluntary out-of-body experience: an fMRI study // Frontiers in Human Neuroscience. 2014. V. 8. Article 70.

42. Stanney K., Salvendy G. Aftereffects and Sense of Presence in Virtual Environments: Formulation of a Research and Development Agenda // International Journal of Human-Computer Interaction. 1998. V. 10. Is. 2. Р. 135–187.

43. Vinson N.G., Lapointe J.F., Parush A., Roberts S. Cybersickness induced by desktop virtual reality // Proceedings of the 2012 Conference on Graphics Interface (Toronto, Canada, May 28–30, 2012), Canadian Information Processing Society. 2012. Р. 69–75.

44. Visch V., Tan E., Molenaar E. The emotional and cognitive effect of immersion in film viewing // Cognition & Emotion. 2010. V. 24. № 8. Р. 1439–1445.

Система Orphus

Loading...
Up