views: 1512
Readers community rating: votes 0
1. Myronenko A., Song X., Carreira-Perpinan M.A. Non-rigid point set registration: Coherent Point Drift / NIPS 2007 Proceedings, pp. 1009–1016.
2. Myronenko A., Song X. Point set registration: Coherent point drift, IEEE transactions on pattern analysis and machine intelligence, 2010, vol. 32, no. 12, pp. 2262–2275.
3. Jacobson A., Jacobson R.L. Radiographic Cephalometry: From Basics to Videoimaging, Quintessence Pub., 1995, pp. 53–63.
4. Yue W., Yin D., Li C., Wang G., Xu T. Automated 2-D cephalometric analysis on X-ray images by a model-based approach, IEEE Trans Biomed Eng 2006, vol. 53, no. 8, pp. 1615–1623.
5. Chu C. et al. Fully automatic cephalometric x-ray landmark detection using random forest regression and sparse shape composition, Proc. ISBI 2014: Automatic Cephalometric X-Ray Landmark Detection Challenge, 2014. 8 p.
6. Wang C.-W. Evaluation and Comparison of Anatomical Landmark Detection Methods for Cephalometric X-Ray Images: A Grand Challenge, IEEE Transactions on Medical Imaging, 2015, 11 p.
7. Swennen G.R.J., Schutyser F., Hausamen J.-E. Three-Dimensional Cephalometry / A Color Atlas and Manual. Springer-Verlag, Berlin, Heidelberg, 2006, pp. 116–185.
8. Shahidi S, Bahrampour E, Soltanimehr E, Zamani A, Oshagh M, Moattari M, Mehdizadeh A. The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images, BMC Med. Imaging, 2014, vol. 14, no. 1, pp. 1471–2342.
9. Gupta A., Kharbanda O.P., Sardana V., Balachandran R., Sardana H.K. A knowledgebased algorithm for automatic detection of cephalometric landmarks on CBCT images, International journal of computer assisted radiology and surgery, 2015 1 November, vol. 10, no. 11, pp. 1737–1752.
10. Koch M. et al. (2013) Towards Deformable Shape Modeling of the Left Atrium Using Non-Rigid Coherent Point Drift Registration. Meinzer HP (eds) Bildverarbeitung fur die Medizin 2013. Informatik aktuell. Springer, Berlin, Heidelberg, 2013, pp. 332–337.
11. Delavari M., Foruzan A.H., Chen Y.-W. Improvement of statistical shapemodels for soft tissues using modified-coherent point drift, IFAC-PapersOnLine, 2015, vol. 48, pp. 36–41.
12. Peng L., Li G., Xiao M., Xie L. Robust CPD Algorithm for Non-Rigid Point Set Registration Based on Structure Information, Public Library of Science (PLOS) One, Feb 2016, vol. 11, no. 2, pp. 1–17.
13. Mansoory M.S., Allahverdy A., Jafari A.H. Mitral Valve Prolapse Classification from an Echocardiography Sequence using Coherent Point Drift Method based on Fractal Dimension, Journal of Biomedical Physics and Engineering, 2016.
14. Ravikumar N., Gooya A., Frangi A.F. and Taylor Z.A. Generalised coherent point drift for group-wise registration of multi-dimensional point sets, International Conference on Medical Image Computing and Computer-Assisted Intervention. Medical Image Computing and Computer Assisted Intervention — MICCAI 2017 , September 11–13, 2017, Quebec City, QC, Canada. Lecture Notes in Computer Science (10433). Springer, pp. 309–316.
15. Gadomski P.J. Measuring Glacier Surface Velocities With LiDAR: A Comparison of Three-Dimensional Change Detection Methods / Master’s thesis, University of Houston, Geosensing Systems Engineering and Sciences. (December 2016). https://www.researchgate.net/publication/ /315773214_Measuring_Glacier_Surface_ _Velocities_With_LiDAR_A_Comparison_of_ _Three-Dimensional_Change_ Detection_ _Methods
16. Senyukova O.V., Zubov A.Yu. Polnaya anatomicheskaya razmetka izobrazhenij magnitnorezonansnoj tomografii golovnogo mozga s pomosch'yu sopostavleniya s neskol'kimi atlasami // Programmirovanie, 2016, № 6, c. 35–41.
17. Khvostikov A.V., Krylov A.S., Kamalov Yu.R. Teksturnyj analiz ul'trazvukovykh izobrazhenij dlya diagnostirovaniya fibroza pecheni // Programmirovanie, 2015, № 5, c. 39–46.
18. Tikhonov A.N. O nekorrektnykh zadachakh linejnoj algebry i ustojchivom metode ikh resheniya // Doklady Akademii nauk SSSR, 1965, t. 163, № 3, c. 97–102.
19. Lindeberg T. Scale Selection Properties of Generalized Scale-Space Interest Point Detectors, J. Math. Imaging Vis., 2013, vol. 46, no. 2, pp. 177–210.
20. Kharinov M.V. Klasterizatsiya pikselej dlya segmentatsii tsvetovogo izobrazheniya // Programmirovanie, 2015, № 5, c. 20–30.
21. Garilov N.I., Turlapov V.E. Novyj podkhod k razrabotke algoritmov ob'emnogo renderinga na osnove izmereniya kachestva vizualizatsii // Programmirovanie. 2014, № 4, c. 23–36.
22. Mamaev N.V., Lukin A.S., Yurin D.V. HeNLMLA: Lokal'no-adaptivnyj algoritm nelokal'nogo srednego na osnove razlozheniya po funktsiyam Ehrmita // Programmirovanie, 2014, № 4, c. 46–54.