Protein Trap: How do Green Chimeras «Catch» Genes

Publication type Article
Status Published
Novosibirsk National Research State University
Institute of Cytology and Genetics, Siberian Branch, RAS
Address: Russian Federation, Novosibirsk
Affiliation: Novosibirsk National Research State University
Address: Russian Federation
Affiliation: Institute of Cytology and Genetics, Siberian Branch, RAS
Address: Russian Federation
Journal namePriroda
EditionIssue №8

Protein trap is one of the modern genetic techniques, based on introducing of green fluorescent protein (GFP) coding sequence into the genome. The modern research tools developed on a protein trap basis allow artificially altering the intracellular amount of hybrid RNAs or proteins. Here we give examples of various methods of using the protein traps — from the analysis of the specific genes expression and the subcellular localization of the inverstigated pro teins to the studies of interactions between different organism’s tissues or organs.

KeywordsGFP, green fluorescent protein, recombinant proteins, gene expression, intracellular markers
Publication date04.10.2018
Number of characters527
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 627

Readers community rating: votes 0

1. Shimomur O., Johnson F.H., Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell Comp. Physiol. 1962; 59(3): 223–239. Doi:10.1002/jcp.1030590302.

2. Prasher D.C., Eckenrode V.K., Ward W.W. et al. Primary structure of the Aequorea victoria green fluorescent protein. Gene. 1992; 111(2): 229–233. Doi:1016/0378 1119(92)90691 H.

3. Stepanenko O.V., Verkhusha V.V., Kuznetsova I.M. i dr. Fluorestsentnye belki: fiziko khimicheskie svojstva i ispol'zovanie v kletochnoj biologii. Tsitologiya. 2007; 49(5): 395–420. [Stepanenko O.V., Verkhusha V.V., Kuznetsova I.M. et al. Fluorescent proteins: physical chemical properties and application in cell biology. Cytology. 2007; 49(5): 395–420. (In Russ.).]

4. Wang S., Hazelrigg T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature. 1994; 369: 400–403. Doi:10.1038/369400a0.

5. Chudakov D.M., Matz M.V., Lukyanov S.A. et al. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 2010; 90: 1103–1163. Doi:10.1152/physrev.00038.2009.

6. Giepmans B., Adams S., Ellisman M. et al. The fluorescent toolbox for assessing protein location and function. Science. 2006; 312: 217–224. Doi:10.1126/science.1124618.

7. Nerusheva O.O., Dorogova N.V., Omelyanchuk L.V. GFP markers for studying D.melanogaster spermatogenesis. Cent. Eur. J. Biol. 2009; 4(4): 452–460. Doi:10.2478/s11535 009 0052 y.

8. Kelso R.J. Buszczak M., Quisones A.T. et al. Flytrap, a database documenting a GFP protein trap insertion screen in Drosophila melanogaster. Nucleic. Acids. Res. 2004; 32(Database issue): D418–D420. Doi:10.1093/nar/gkh014.

9. Morin X., Daneman R., Zavortink M. et al. A protein trap strategy to detect GFP tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl. Acad. Sci. USA. 2001; 98(26): 15050e5. Doi:10.1073/pnas.261408198.

10. Quisones-Coello A.T., Petrella L.N., Ayers K. et al. Exploring strategies for protein trapping in Drosophila. Genetics. 2007; 175(3): 1089–1104. Doi:10.1534/genetics.106.065995.

11. Buszczak M., Paterno S., Lighthouse D. et al. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics. 2007; 175(3): 1505–1531. Doi:10.1534/genetics.106.065961.

12. Dorogova N.V., Nerusheva O.O., Omel'yanchuk L.V. i dr. Izuchenie strukturnoj organizatsii i dinamiki ehndoplazmaticheskogo retikuluma v spermatogeneze Drosophila melanogaster s pomosch'yu gibridnogo belka Pdi GFP. Biologicheskie membrany. 2009; 26(1): 50–57. [Dorogova N.V., Nerusheva O.O., Omelyanchuk L.V. Structural organization and dynamics of the endoplasmic reticulum during spermatogenesis of Drosophila melanogaster: Studies using PDI GFP chimera protein. Biochemistry (Moscow) Supplement. Series A: Membrane and Cell Biology. 2009; 3(1): 55–61.]

13. Nerusheva O.O., Dorogova N.V. et al. A GFP trap study uncovers the functions of Gilgamesh protein kinase in Drosophila melanogaster spermatogenesis. Cell Biology International. 2009; 33(5): 586–593. Doi:10.1016/j.cellbi.2009.02.009.

14. Neumüller R.A., Wirtz-Peitz F., Lee S. et al. Stringent analysis of gene function and protein—protein interactions using fluorescently tagged genes. Genetics. 2012; 190(3): 931–940. Doi:10.1534/genetics.111.136465.

15. Roignant J.Y., Carré C., Mugat B. et al. Absence of transitive and systemic pathways allows cell specific and isoform specific RNAi in Drosophila. RNA. 2003; 9(3): 299–308. Doi:10.1261/rna.2154103.

16. Pastor-Pareja J.C., Xu T. Shaping cells and organs in Drosophila by opposing roles of fat body secreted collagen IV and perlecan. Dev. Cell. 2011; 21(2): 245–256. Doi:10.1016/j.devcel.2011.06.026.

17. Caussinus E., Kanca O., Affolter M. Fluorescent fusion protein knockout mediated by anti GFP nanobody. Nat. Struct. Mol. Biol. 2011; 19: 117–121. Doi:10.1038/nsmb.2180.

18. Kontarakis Z., Pavlopoulos A., Kiupakis A. et al. A versatile strategy for gene trapping and trap conversion in emerging model organisms. Development. 2011; 138(12): 2625–2630. Doi:10.1242/dev.066324.

Система Orphus