On m-Quasi-resolvable Block Designs and q-ary Constant-Weight Codes

 
PIIS055529230001313-8-1
DOI10.31857/S055529230001313-8
Publication type Article
Status Published
Authors
Affiliation:
Address: Russian Federation
Affiliation:
Address: Russian Federation
Affiliation:
Address: Russian Federation
Journal nameProblemy peredachi informatsii
EditionVolume 54 Issue 3
Pages54-61
Abstract

                        

Keywords
Received12.10.2018
Publication date12.10.2018
Number of characters314
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1027

Readers community rating: votes 0

1. Beth T., Jungnickel D., Lenz H., Design Theory. Cambridge: Cambridge Univ. Press, 1999.

2. Semakov N.V., Zinov'ev V.A. Ravnovesnye kody i takticheskie konfiguratsii // Probl. peredachi infor. 1969. T. 5. № 3. S. 28–36.

3. Johnson S.M. A New Upper Bound for Error-Correcting Codes // IRE Trans. Inform. Theory. 1962. V. 8. № 3. P. 203–207.

4. Abel R.J.R., Ge G., Yin J. Resolvable and Near-Resolvable Designs // Handbook of Combinatorial Designs. Boca Raton: Chapman and Hall/CRC Press, 2007. P. 124–132.

5. Furino S., Miao Y., Yin J. Frames and Resolvable Designs: Uses, Constructions, and Existence. Boca Raton: CRC Press, 1996. P. 199–202.

6. Bassalygo L.A. Novye verkhnie granitsy dlya kodov, ispravlyayuschikh oshibki // Probl. peredachi inform. 1965. T. 1. № 4. S. 41–44.

7. Bassalygo L.A., Zinov'ev V.A. Zamechanie ob uravnoveshennykh nepolnykh blok-skhemakh, pochti razreshimykh blok-skhemakh i q-ichnykh ravnovesnykh kodakh // Probl. peredachi inform. 2017. T. 53. № 1. S. 55–59.

8. Semakov N.V., Zinov'ev V.A., Zajtsev G.V. Ravnomerno upakovannye kody // Probl. peredachi inform. 1971. T. 7. № 1. S. 38–50.

9. Gronau H.-D.O.F., Mullin R.C. On Super-simple 2-(v, 4, λ) Designs // J. Combin. Math. Combin. Comput. 1992. V. 11. P. 113–121

10. Adams P., Bryant D.E., Khodkar A. On the Existence of Super-simple Designs with Block Size 4 // Aequationes Math. 1996. V. 51. № 3. P. 230–246.

11. Zaitsev G.V., Zinoviev V.A., Semakov N.V. Interrelation of Preparata and Hamming Codes and Extension of Hamming Codes to New Double-Error-Correcting Codes // Proc. 2nd Int. Sympos. on Information Theory. Tsakhkadsor, Armenia, USSR. September 2–8, 1971. Budapest: Akad. Kiad´o, 1973. P. 256–263.

12. Baartmans A.H., Bluskov I., Tonchev V.D. The Preparata Codes and a Class of 4-Designs // J. Combin. Des. 1994. V. 2. № 3. P. 167–170.

Система Orphus

Loading...
Up