Using Knudsen's thermal power to detect CO2 in a microscopic low pressure gas sensor

 
PIIS056852810002305-6-1
DOI10.31857/S056852810002305-6
Publication type Article
Status Published
Authors
Affiliation: Department of Mechanical Engineering, Babol University of Technology
Address: Islamic Republic of Iran
Affiliation: Department of Mechanical Engineering, Islamic Azad University
Address: Islamic Republic of Iran
Affiliation: Department of Mechanical Engineering, Babol University of Technology
Address: Islamic Republic of Iran
Affiliation: Department of Chemical Engineering, School of Engineering & Applied Science
Address: Azerbaijan
Journal nameIzvestiia Rossiiskoi akademii nauk. Mekhanika zhidkosti i gaza
EditionIssue 6
Pages94-104
Abstract

  

Keywords
Received15.12.2018
Publication date15.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1164

Readers community rating: votes 0

1. Chun-Hui Wu, Dongyang Kang, Ping-Hei Chen, Yu-Chong Ta. MEMS thermal flow sensors // Sensors and Actuators A: Physical. 2016. V. 241. P. 135Ts144

2. Bhagaban Behera, Sudhir Chandra. An innovative gas sensor incorporating ZnOTsCuO nanoflakes in planar MEMS technology // Sensors and Actuators B: Chemical. 2016. V. 229. P. 414Ts424

3. Galkin V. S., Kogan M. N., Fridlender O. G. Some kinetic effects in continuum flows // Fluid Dynamics. 1970. V. 5. є 3. P. 364Ts371.

4. Galkin V. S., Kogan M. N., Fridlender O. G. Free convection in a gas in the absence of external forces // Fluid Dynamics. 1971. V. 6. є 3. P. 448Ts457.

5. Alexandrov V., Boris A., Freedlender O., Kogan M., Nikolsky Yu., Perminov V. Thermal stress effect and its experimental detection / Rarefied Gas Dynamics. Proc. 20th Intern. Symp. 1997. Beijing. P. 79.

6. Alexandrov V.Yu., Friedlander O. G., Nikolsky Yu. V. Numerical and experimental investigations of thermal stress effect on nonlinear thermomolecular pressure difference // AIP Conf. Proc. AIP. 2003. V. 663. є 1. P. 250Ts257.

7. Maxwell J. C. On stresses in rarified gases arising from inequalities of temperature // Philos. Trans. Roy. Soc. London. 1879. V. 27. P. 231Ts256.

8. Reynolds O. On the forces caused by the communication of heat between a surface and a gas; and on a new photometer // Philos. Trans. Roy. Soc. London. 1876. V. 166. P. 725Ts735.

9. Einstein A. Theory of radiometer energy source // Z. Phys. 1924. V. 27. P. 1Ts6.

10. Ketsdever A., Gimelshein N., Gimelshein S., Selden N. Radiometric phenomena: From the 19th to the 21st century // Vacuum. 2012. V. 86. P. 1644Ts1662.

11. Gerdroodbary M. B., Mosavat M., Ganji D. D., Taeibi-Rahni M., Moradi R. Application of molecular force for mass analysis of Krypton/Xenon mixture in low-pressure MEMS gas sensor // Vacuum. 2018. https://doi.org/10.1016/j.vacuum.2017.12.042.

12. Hassanvand A., Gerdroodbary M. B., Anazadehseyed A., Moradi R. Calibration of low-pressure MEMS gas sensor for detection of hydrogen gas // Int. J. Hydrogen. Energy. 2018. https://doi.org/10.1016/j.ijhydene.2017.11.087.

13. Gerdroodbary M. B., Ganji D. D., Taeibi-Rahni M., Shidvash Vakilipour // Effect of geometrical parameters on radiometric force in low-pressure MEMS gas actuator // Microsystem Technologies. 2018. https://doi.org/10.1007/s00542-017-3653-9.

14. Kaajakari V., Lal A. Thermokinetic actuation for batch assembly of microscale hinged structures // J. Microelectromech. Syst. 2003. V. 12. P. 425Ts432.

15. Strongrich A. D., OTNeill W.J., Cofer A. G., Alexeenko A. A. Experimental measurements and numerical simulations of the Knudsen force on a non-uniformly heated beam // Vacuum. 2014. V. 109. P. 405Ts416.

16. Strongrich A., Alexeenko A. Microstructure actuation and gas sensing by the Knudsen thermal force // Applied Physics Lett. 2015. V. 107. P. 193508.

17. Strongrich A. D., Pikus A. J., Sebastiao I. B., Peroulis D., Alexeenko A. A. Low-pressure gas sensor exploiting the Knudsen thermal force: Dsmc modeling and experimental validation / IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2016). 2016. P. 828Ts831.

18. Vargas M., Tatsios G., Valougeorgis D., Stefanov S. Rarefied gas flow in a rectangular enclosure induced by non-isothermal walls // Phys. Fluids. 2014. V. 26. P. 057101.

19. Bosworth R. W., Ventura A. L., Ketsdever A. D., Gimelshein S. F. Measurement of negative thermophoretic force // J. Fluid Mech. 2016. V. 805. P. 207Ts221.

20. Ventura A., Gimelshein N., Gimelshein S., Ketsdever A. Effect of vane thickness on radiometric force // J. Fluid Mech. 2013. V. 735. P. 684Ts704.

21. Bond D., Goldsworthy M. J., Wheatley V. Numerical investigation of the heat and mass transfer analogy in rarefied gas flows // Intern. J. Heat Mass Transfer. 2015. V. 85. P. 971Ts986.

22. Bond D. M., Wheatley V., Goldsworthy M. Numerical investigation of curved channel Knudsen pump performance // Intern. J. Heat Mass Transfer. 2014. V. 76. P. 1Ts15.

23. Balaj M., Roohi E., Akhlaghi H. Effects of shear work on non-equilibrium heat transfer characteristics of rarefied gas flows through micro/nanochannels // Intern. J. Heat Mass Transfer. 2015. V. 83. P. 69Ts74.

24. Guo V., Singh D., Murthy J., Alexeenko A. A. Numerical simulation of gas-phonon coupling in thermal transpiration flows // Phys. Rev. V. E80 (4). P. 046310.

25. Gerdroodbary M. B., Ganji D. D., Taeibi-Rahni M., Vakilipour S. Effect of Knudsen thermal force on the performance of low-pressure micro gas sensor // Europ. Phys. J. Plus. 2017. V. 132. є 7. P. 315.

26. Nabeth J., Chigullapalli S., Alexeenko A. A. Quantifying the Knudsen force on heated microbeams: A compact model and direct comparison with measurements // Phys. Rev. E. V. 83 (6). P. 066306.

27. Bird G. A. Molecular gas dynamics and the direct simulation of gas flows. Oxford: Clarendon Press, 1994.

28. OpenFOAM: the Open Source CFD Toolbox, user Guide, Version 1.6, 2009.

29. Gerdroodbary M. B., Barzegar M., Amini Y., Ganji D. D., Takam M. R. The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow // Adv. Space Res. 2017. V. 59. P. 1330Ts1340.

30. Gerdroodbary M. B., Barzegar M., Ganji D. D., Amini Y. Numerical study of shock wave interaction on transverse jets through multiport injector arrays in supersonic crossflow // Acta Astronautica. 2015. V. 115. P. 422Ts433.

31. Gerdroodbary M. B., Barzegar M., Takami M. R., Heidari H. R., Fallah K., Ganji D. D. Comparison of the single/multi transverse jets under the influence of shock wave in supersonic crossflow // Acta Astronautica. 2016. V. 123. P. 283Ts291.

32. Gerdroodbary M. B., Barzegar M., Fallah K., Pourmirzaagha H. Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor // Acta Astronautica. 2017. V. 132. P. 25Ts32.

33. Mousavi S. V., Gerdroodbary M. B., Barzegar M., Sheikholeslami M., Ganji D. D. The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel // Europ. Phys. J. Plus. 2016. V. 131. P. 347.

34. Gerdroodbary M. B., Mokhtari M., Bishehsari Sh., Fallah K. Mitigation of ammonia dispersion with mesh barrier under various atmospheric stability conditions // Asian J. Atmospheric Environment. 2016. V. 10. P. 125Ts136.

35. Taishan Zhu, Wenjing Ye. Origin of Knudsen forces on heated microbeams // Phys. Rev. E. 2010. V. 82. P. 036308.

36. Taishan Zhu, Wenjing Ye, Jun Zhang. Negative Knudsen force on heated microbeams // Phys. Rev. E. 2011. V. 84. P. 056316.

Система Orphus

Loading...
Up