Модель массообменных процессов в смеси континуумов, состоящей из одного деформируемого и двух жидких компонентов

 
Код статьиS057232990002539-2-1
DOI10.31857/S057232990002539-2
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация: Институт механики сплошных сред Уральского отделения РАН
Адрес: Российская Федерация
Аффилиация: Институт механики сплошных сред Уральского отделения РАН
Адрес: Российская Федерация
Название журналаИзвестия Российской академии наук. Механика твердого тела
Выпуск№ 6
Страницы64-77
Аннотация

Предлагаемая математическая модель основана на теории смеси взаимопроникающих континуумов: деформируемого (полимер) и двух жидких континуумов. Определяющие уравнения модели получены в виде следствий из законов термодинамики и требования их инвариантности к преобразованиям Галилея. Уравнения, описывающие движение жидких компонентов, сформулированы в координатах, связанных с полимерным компонентом смеси. Необходимость в таком выборе возникает в результате того, что деформироваться может только полимер. При решении задач требуется находить деформации полимера и исследовать движение растворителей относительно него, включая выход растворителей через границу полимера во внешнюю среду. Рассматриваемый в математической модели материал способен работать в условиях конечных деформаций. Выражение свободной энергии смеси учитывает энергии взаимодействия молекул смеси друг с другом (полимера и двух растворителей).

Ключевые словазаконы термодинамики, теория смеси, полимер, растворитель, диффузия, напряжения, деформации, химический потенциал
Источник финансированияРабота выполнена при финансовой поддержке РФФИ в рамках проекта № 16-08-00910_а.
Получено22.12.2018
Дата публикации22.12.2018
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 886

Оценка читателей: голосов 0

1. Higuchi T. Mechanism of sustained action medication: theoretical analysis of rate of release of solid drugs dispersed in solid matrices // J. Pharm. Sci. 1963. V. 52. P.1145–1148.

2. Dukhin S. S., Labib M. E. Theory of effective drug release from medical implants based on the Higuchi model and physico-chemical hydrodynamics // Colloids and Surfaces. A. Physicochemical and Engineering Aspects. 2012. V. 409. P. 10–20.

3. McCue S.W., Hsieh M., Moroney T.J., Nelson M.I. Asymptotic and Numerical Results for a Model of Solvent-Dependent Drug Diffusion through Polymeric Spheres // Society for Industrial and Applied Mathematics. Journal on Applied Mathematics. 2011. V.71. N. 6. P. 2287–2311.

4. Hsieh M. Mathematical modelling of controlled drug release from polymer micro-spheres: incorporating the effects of swelling, diffusion and dissolution via moving boundary problems. A thesis submitted for the degree of doctor of philosophy, Queenland university of technology, 2012. 198 p.

5. Wijmans J.G., Baker R.W. The solution–diffusion model: a review // Journal of Membrane Science. 1995. V.107. P. 1–21.

6. Svistkov A. L. Mechanical properties and mass transfer of viscoelastic deformable media // Int. J. Eng. Sci. 2001. V. 39. P. 1509–1532.

7. Mehrer H. Diffusion in solids. N. Y.: Heidelberg, Berlin: Springer, 2007. 644 p.

8. Денисюк Е.Я. Механика и термодинамика высокоэластичных материалов, насыщенных жидкостью // Известия РАН. Механика твердого тела. 2010. № 1. С.118–138.

9. Karimi M. Diffusion in polymer solids and solutions // Mass transfer in chemical engineering processes. 2011. URL: http://www.intechopen.com/books/mass-transfer-inchemical-engineering-processes/diffusion-in-polymer-solids-and-solutions.

10. Захаров М.А. Эволюция химических потенциалов в тройных твердых растворах с взаимно зависимыми компонентами // Вестник Новгородского государственного университета. 2013. № 75. Т. 2. С.72–76.

11. Adkins J. E. Diffusion of fluids trough aeolotropic highly elastic solids // Arch. Rat. Mech. Anal. 1964. V. 15. P. 222–234.

12. Adkins J. E. Non-linear diffusion. III. Diffusion through isotropic highly elastic solids // Phil. Trans. Roy. Soc. Part A. 1964. V. 256. P. 301–316.

13. Atkin R. J. Uniqueness theorems for linearized theories of interacting continua // Mathematika. 1967. V. 14. P. 27–42.

14. Green A. E., Adkins J. E. A contribution to the theory of non-linear diffusion // Arch. Rat. Mech. Anal. 1964. V. 15. P. 235–246.

15. Green A. E., Naghdi P. M. A dinamical theory of interacting continua // Int. J. Eng. Sci. 1965. V. 3. P. 231–241.

16. Green A. E., Steel T. R. Constitutive equations for interactiong continua // Int. J. Eng. Sci. 1966. V. 4. P. 483–500.

17. Crochet M. J., Naghdi P. M. On constitutive equations for flow of fluid through an elastic solid // Int. J. Eng. Sci. 1966. V. 4. P. 383–401.

18. Steel T. R. Application of a theory of interacting continua // J. Mech. Appl. Math. 1967. V. 20. P. 57–72.

19. Truesdell C. Rational thermodynamics. A course of lectures on selected topics. N. Y.: McGraw-Hill, 1969. 208 p.

20. Green A. E., Naghdi P. M. The flow of fluid throught an elastic solid // Acta Mech. 1970. V. 9. P. 329–340.

21. Свистков А. Л. Неравновесная термодинамика эластомерных материалов. Дисс. … д-ра. физ.-мат. наук. Пермь, 2002. 258 с.

22. Гузев М.А. Тензор химического потенциала для модели двухфазной сплошной среды // Прикладная механика и техническая физика. 2005. Т. 46. № 3. С. 12–22.

23. Ерохин Л.И. Химические потенциалы в многокомпонентных сплавах // Конденсированные среды и межфазные границы. 2008. Т. 10. №4. С. 233–237.

24. Masaro L., Zhu X.X. Physical models of diffusion for polymer solutions, gels and solids // Progress in polymer science. 1999. V. 24. P. 731–775.

25. Denisyuk E. Ya. Thermodynamics of deformation and swelling or crosslinked polymers under small deformations // Polymer science. Ser. A. 2012. V. 54. N. 3. Р. 240–247.

26. Шпынёва М.А., Конюхов В.Ю., Бенда А.Ф. Исследования набухания флексоформ фирмы Дюпон // Известия ТулГУ. Технические науки. 2013. № 3. С. 173–182.

27. Levitas V., Attariani H. Anisotropic compositional expansion and chemical potential for amorphous lithiated silicon under stress tensor // Scientific Reports. 2014. N 3. P. 1615–1619.

28. Фрейдин А.Б. О тензоре химического сродства при химических реакциях в деформируемых материала // Известия РАН. Механика твердого тела. 2015. № 3. С. 35–68.

Система Orphus

Загрузка...
Вверх