Numerical modeling of low-velocity impact on hybrid composite

 
PIIS023408790001926-2-1
Publication type Article
Status Published
Authors
Affiliation: Moscow Institute of Physics and Technology (State University)
Address: Russian Federation
Affiliation: Moscow Institute of Physics and Technology (State University)
Address: Russian Federation
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 11
Pages27-43
Abstract

To increase the strength of parts made of polymer composites in aviation, reinforcement of the polymer composite with one or several layers of metal is used. This work is devoted to the modeling of the behavior of such composites under low-velocity impacts. This impact type is especially dangerous for polymer composites because of the barely visible impact damage (BVID). Simulation was carried out using a grid-characteristic method, and various destruction criteria (Tsai-Hill, Tsai-Wu, Drucker-Prager, Hashin, Puck) and different types of contact between titanium and polymer composite were considered.

Keywordsnumerical simulation, continuous mechanics, grid-characteristic method, polymer composite, hybrid composite, destruction, low-velocity impact
AcknowledgmentThe work is supported by grant RSF № 17-71-10240.
Received09.11.2018
Publication date21.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1412

Readers community rating: votes 0

1. S. Abrate. Impact on laminated composite materials // Applied Mechanics Reviews, 1991, v.44, №4, p.155-190.

2. S. Abrate. Impact on laminated composites: recent advances // Applied Mechanics Reviews, 1994, v.47, №11, p.517–544.

3. V. Lopresto, G. Caprino. Damage mechanisms and energy absorption in composite laminates under low velocity impact loads // Dynamic Failure of Composite and Sandwich Structures. Solid Mechanics and Its Applications. Eds: Abrate S., Castanie B., Rajapakse Y., Springer, Dordrecht, 2013, v.192, p.209-289.

4. N. Hu, Y. Zemba, T. Okabe, C. Yan, H. Fukunaga, A. Elmarakbi. A New Cohesive Model for Simulating Delamination Propagation in Composite Laminates under Transverse Loads // Mechanics of Materials, 2008, v.40, №11, p.920-935.

5. K.A. Beklemysheva, A.V. Vasyukov, A.S. Ermakov, I.B. Petrov, A.S. Dzyuba, V.I. Golovan. Chislennoe modelirovanie dinamicheskikh protsessov pri nizkoskorostnom udare po kompozitnoj stringernoj paneli // Matem. modelir., 2014, t.26, № 9, s.96-110.

6. K.A. Beklemysheva, A.S. Ermakov, I.B. Petrov, A.V. Vasyukov. Numerical simulation of the failure of composite materials by using the grid-characteristic method // Mathematical Models and Computer Simulations, 2016, v.8, №5, p.557-567.

7. R.P.L. Sanga, C.G.O. Pantale. Finite Element Simulation of Low Velocity Impact Damage on an Aeronautical Carbon Composite Structure // Appl. Comp. Materials, 2016, v.23, №6, p.1195-1208.

8. N.S. Bakhvalov, G.P. Panasenko. Osrednenie protsessov v periodicheskikh sredakh. M.: Nauka, 1984, 356 s.

9. M.O.W. Richardson, M.J. Wisheart. Review of low-velocity impact properties of composite materials // Composites. Part A: Applied Science and Manufacturing, 1996, v. 29, №12, p. 1123-1131.

10. P.O. Sjoblom, J.T. Hartness, T.M. Cordell. On low-velocity impact testing of composite materials // Journal of Composite Materials, 1988, v. 22, №1, p. 30-52.

11. K.N. Shivakumar, W. Elber, W. Illg. Prediction of low-velocity impact damage in thin circular laminates // AIAA J., 1985, v. 23, №3, p.442-449.

12. W.J. Cantwell, J. Morton. The impact resistance of composite materials – a review // Composites, 1991, v.22, №5, p.347-362.

13. P. Robinson, G.A.O. Davies. Impactor mass and specimen geometry effects in low velocity impact of laminated composites // Int. J. of Impact Eng., 1992, v.12, №2, p.189-207.

14. G.A.O. Davies, P. Robinson. Predicting failure by debonding/delamination. – Imperial Coll. of Science and Technology, London (England), 1992.

15. D. Liu, L.E. Malvern. Matrix cracking in impacted glass/epoxy plates // J. of Composite Materials, 1987, v.21, №7, p.594-609.

16. R.C. Batra, G. Gopinath, J.Q. Zheng. Damage and failure in low energy impact of fiberreinforced polymeric composite laminates // Comp.Structures, 2012, v.94, №2, p.540–547.

17. D. Hull, Y.B. Shi. Damage mechanism characterisation in composite damage tolerance investigations // Composite Structures, 1993, v.23, p.99–120.

18. S.A. Hitchen, R.M.J. Kemp. The effect of stacking sequence on impact damage in a carbon fibre/epoxy composite // Composites, 1995, v.26, №3, p.207–214.

19. H. Kaczmerek. Ultrasonic detection of damage in CFRPs // J. of Composite Materials, 1995, v.29, №1, p.59–95.

20. M.V. Hosur, C.R.L. Murthy, T.S. Ramamurthy, A. Shet. Estimation of impact-induced damage in CFRP laminates through ultrasonic imaging // NDT&E Int., 1998, v.31, №5, p.359–374.

21. I.B. Petrov, A.V. Favorskaya, A.V. Vasyukov, A.S. Ermakov, K.A. Beklemysheva. Numerical Modeling of Non-destructive Testing of Composites // Proc. Computer Science, 2016, v.96, p.930-938.

22. M.R. Abdullah, W.J. Cantwell. The impact resistance of polypropylene-based fibre-metal laminates // Composites Science and Technology, 2006, v.66, №11-12, p.1682–1693.

23. L.B. Vogelesang, A. Vlot. Development of fibre metal laminates for advanced aerospace structures // J. of Materials Processing Technology, 2000, v.103, №1, p.1–5.

24. G.B. Chai, P. Manikandan. Low velocity impact response of fibre-metal laminates – A review // Composite Structures, 2014, v.107, p.363–381.

25. I.B. Petrov, A.G. Tormasov. Chislennoe issledovanie kosogo soudareniya zhestkogo sharika s dvukhslojnoj uprugoplasticheskoj plitoj // Matem. modelirovanie, 1992, t.4, №3, s.20–27.

26. I.B. Petrov, F.B. Chelnokov. Chislennoe issledovanie volnovykh protsessov i protsesso vrazrusheniya v mnogoslojnykh pregradakh // ZhVMiMF, 2003, t.43, №10, s.1562–1579.

27. J.B. Young, J.G.N. Landry, V.N. Cavoulacos. Crack growth and residual strength characteristics of two grades of glass-reinforced aluminium GLARE // Composite Structures, 1994, v.27, №4, p.457–469.

28. M. Papakyriacou, J. Schijve, S.E. Stanzl-Tschegg. Fatigue crack growth behaviour of fibre–metal laminate GLARE-1 and metal laminate 7475 with different blunt notches // Fatigue & Fracture of Engineering Materials & Structures, 1997, v.20, №11, p.1573–1584.

29. W. Guocai, J.-M. Yang. The mechanical behavior of GLARE laminates for aircraft structures // The Journal of the Minerals, 2005, v.57, №1, p.72–79.

30. V.V. Antipov, O.G. Senatorova, N.F. Lukina, V.V. Sidel'nikov, V.V. Shestov. Sloistye metallopolimernye kompozitsionnye materialy // Aviatsionnye materialy i tekhnologii, 2012, №5, s.226–230.

31. M. Sadighi, R.C. Alderliesten, R. Benedictus. Impact resistance of fiber-metal laminates: A review // International Journal of Impact Engineering, 2012, v.49, p.77-90.

32. A. Vlot. Low-Velocity Impact Loading on Fibre Reinforced Aluminium Laminates (ARALL) and Other Aircraft Sheet Materials. – Tech. Univ. Delft, Delft, Netherlands, 1991.

33. A. Vlot. Impact Loading on Fibre Metal Laminates // International Journal of Impact Engineering, 1996, v.18, №3, p.291–307.

34. G. Caprino, G. Spataro, S. Del Luongo. Low-Velocity Impact Behaviour of Fiberglass- Aluminium Laminates // Composites, Part A, 2004, v.35, p.605–616.

35. S. Zhu, G.B. Chai. Low-velocity impact response of fibre-metal laminates – experimental and finite element analysis // Comp. Sci. and Technology, 2012, v.72, №15, p.1793–1802.

36. S. Bernhardt, M. Ramulu, A. Kobayashi. Low-Velocity Impact Response Characterization of a Hybrid Titanium Composite Laminate // J. of Eng. Materials and Technology, 2007, v.129, №2, p.220-226.

37. D.A. Burianek, A.E. Giannakopoulos, S.M. Spearing. Modeling of facesheet crack growth in titanium–graphite hybrid laminates, P.I // Eng. Fracture Mech., 2003, v.70, №6, p.775-798.

38. D.A. Burianek, S.M. Spearing. Modeling of Facesheet Crack Growth in Titanium-Graphite Hybrid Laminates. P.II: Experimental results // Eng. Fracture Mech., 2003, v.70, №6, p.799-812.

39. D.W. Rhymer, W.S. Johnson. Fatigue Damage Mechanisms in Advanced Hybrid Titanium Composite Laminates // International Journal of Fatigue, 2002, v.24, №9, p.995–1001

40. A. Vlot. Impact properties of fibre metal laminates // Comp. Eng., 1993, v.3, №10, p.911–927.

41. A. Seyed Yaghoubi, Y. Liu, B. Liaw. Stacking sequence and geometrical effects on lowvelocity impact behaviors of GLARE 5 (3/2) fiber-metal laminates // Journal of Thermoplastic Composite Materials, 2011, v.25, №2, p.223–247.

42. N.Y. Liu, B. Liaw. Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates // Applied Composite Materials, 2010, v.17, №1, p.43-62.

43. P. Cortes, W.J. Cantwell. The Tensile and Fatigue Properties of Carbon Fiber-reinforced PEEK-Titanium Fiber-metal Laminates // J. of Reinforced Plastics and Comp., 2004, v.23, №15, p.1615-1623.

44. G.B. Chai, P. Manikandan. A layer-wise behavioral study of metal based interply hybrid composites under low velocity impact load // Composite Structures, 2014, v.117, p.17-31.

45. E.N. Kablov, V.V. Antipov, O.G. Senatorova. Sloistye alyumostekloplastiki SIAL -1441 i sotrudnichestvo s Airbus i TU DELFT // Tsv. metally, 2013, №9 (849), s.50–53.

46. V.V. Antipov, O.G. Senatorova, N.F. Lukina, V.V. Sidel'nikov, V.V. Shestov, O.V. Mitrakov, V.I. Popov, A.S. Ershov. Vysokoprochnye treschinostojkie legkie sloistye alyumostekloplastiki klassa SIAL – perspektivnyj material dlya aviatsionnykh konstruktsij // Tekhnologiya legkikh splavov, 2009, №2, s.28–31.

47. N.A. Nochovnaya, P.V. Panin, E.B. Alekseev, K.A. Bokov. Ehkonomnolegirovannye titanovye splavy dlya sloistykh metallopolimernykh kompozitsionnykh materialov // Trudy VIAM, 2014, №11.

48. T. Zhang, Y. Yan, J. Li, H. Luo. Low-velocity impact of honeycomb sandwich composite plates // Journal of Reinforced Plastics and Composites, 2015, v.35, №1, p.8-32.

49. G.B. Chai, S. Zhu. A review of low-velocity impact on sandwich structures // Proceedings of the Institution of Mechanical Engineers, Part L: J. of Materials: Design and Applications, 2011, v.225, №4, p.207–230.

50. C. Scarponi, G. Briotti, R. Barboni, A. Marcone, M. Iannone. Impact testing on composite laminates and sandwich panels // J. of Comp. Materials, 1996, v.30, №17, p.1873–1911.

51. Yu.I. Dimitrienko, Yu.V. Yurin. Mnogomasshtabnoe modelirovanie mnogoslojnykh tonkikh kompozitnykh plastin s uedinennymi defektami // Mat. model. i chislennye metody, 2016, № 12, s.47–66.

52. B.R. Petersen. Finite element analysis of composite plate impacted by a projectile. – University of Florida, 1985.

53. G.A.O Davies, X. Zhang, G. Zhou, S. Watson. Numerical modelling of impact damage // Composites, 1994, v.25, p.342–350.

54. V. Tita, J.J. de Carvalho, D. Vandepitte. Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches // Compos. Struct., 2008, v.83, p.413-428.

55. F. Hashagen, R. de Borst. Numerical assessment of delamination in fibre metal laminates // Comp. Methods Appl. Mech. Eng., 2000, v.185, p.141–159.

56. H. Nakatani, T. Kosaka, K. Osaka, Y. Sawada. Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact // Composites Part A: Applied Science and Manufacturing, 2011, v.42, №7, p.772–781.

57. M.J. Reiner, J.P. Torres, M. Veidt, M. Heitzmann. Experimental and numerical analysis of drop-weight low-velocity impact tests on hybrid titanium composite laminates // Journal of Composite Materials, 2016, v.50, №26, p.3605-3617.

58. A. Kursun, M. Senel, H. M. Enginsoy. Experimental and numerical analysis of low velocity impact on a preloaded composite plate // Advances in Eng. Software, 2015, v.90, p.41-52.

59. F.D. Moriniere, R.C. Alderliesten, M.Y. Tooski, B. Rinze. Damage evolution in GLARE fibre-metal laminate under repeated low-velocity impact tests // Central European J. of Eng., v.2, №4, p.603-611.

60. G.R. Rajkumar, M. Krishna, H.N. Narasimha Murthy, S.C. Sharma, K.R. Vishnu Mahesh. Experimental Investigation of Low-Velocity Repeated Impacts on Glass Fiber Metal Composites // J. of Materials Eng. and Performance, 2012, v.21, №7, p.1485-1490.

61. M.J. Hinton, A.S. Kaddour. Maturity of 3D failure criteria for fibre-reinforced composites: Comparison between theories and experiments: Part B of WWFE-II // J. of Comp. Mater., 2013, №7, p.925-966.

62. M.J. Hinton, A.S. Kaddour, P.D. Soden. Failure criteria in fibre reinforced polymer composites: the world-wide failure exercise. – Amsterdam; London, Elsevier, 2004.

63. Y.P. Siow, P.W. Shim. An experimental study of low velocity impact damage in woven fiber composites // J. of Composite Materials, 1998, v. 32, №12, p. 1178–1202.

64. G. Dorey, P. Sigety, K. Stellbrink, W.G.J. Hart. Impact damage tolerance of carbon fibre and hybrid laminates. – RAE Technical Report 87 057, Royal Aerospace Establishment, Farnborough, UK, 1987.

65. H.-Y.T. Wu, G.S. Springer. Impact induced stresses, strains, and delaminations in composite plates // Journal of Composite Materials, v.22, №6, p.533-560.

66. N. Sela, O. Ishai. Interlaminar fracture toughness and toughening of laminated composite materials: a review // Composites, 1989, v.20, №5, p.423-443.

67. D.S. Cairns, P.J. Minuet, M.G. Abdallah. Theoretical and experimental response of composite laminates with delaminations loaded in compression // Comp. Struct., 1993, v.25, p.113–120.

68. A.T. Nettles, A.J. Hodge. Compression-after-impact testing of thin composite materials // Proceedings (A92-51501 21-23). Covina, CA, Society for the Advancement of Material and Proc. Eng., 1991, p.177-183.

69. M.N. Ghasemi Nejhad, A. Parvizi-Majidi. Impact behaviour and damage tolerance of woven carbon fibre-reinforced thermoplastic composites // Comp., 1990, v.21, №2, p.155–168.

70. C.T. Sun, A. Dicken, H.F. Wu. Characterization of impact damage in ARALL laminates // Comp. Sci. Technol., 1993, v.49, p.139–144.

71. E.V. Gonzalez, P. Maimi, P.P. Camanho, A. Turon, J.A. Mayugo. Simulation of dropweight impact and compression after impact tests on composite laminates // Composite Structures, 2012, v.94, №11, p.3364-3378.

72. G. Caprino. Residual strength prediction of impacted CFRP laminates // Journal of Composite Materials, 1984, v.18, p.508-518.

73. G.I. Kanel', S.V. Razorenov, A.V. Utkin, V.E. Fortov. Udarno-volnovye yavleniya v kondensirovannykh sredakh. – M.: Yanus-K, 1996, 407 s.

74. V.D. Ivanov, V.I. Kondaurov, I.B. Petrov, A.S. Kholodov. Raschet dinamicheskogo deformirovaniya i razrusheniya uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami // Matem. modelirovanie, 1990, t.2, №11, s.10–29.

75. R.B. Bucinell, R.J. Nuismer, J.L. Koury. Response of composite plates to quasi-static impact events // Composite materials: fatigue and fracture. Ed: T.K. O’Brien. ASTM STP 1110, 1991, p.528–549.

76. M.G. Stout, D.A. Koss, C. Liu, J. Idasetima. Damage development in carbon/epoxy laminates under quasi-static and dynamic loading // Comp. Sci. Technol., 1999, v.59, p.2339–2350.

77. D. Delfosse, A. Poursatip. Energy-based approach to impact damage in CFRP laminates // Composites, 1997, v.28, p.647–655.

78. S. Hong, D. Liu. On the relationship between impact energy and delamination area // Exp. Mech., 1989, v.29, №2, p.115–120.

79. K.M. Magomedov, A.S. Kholodov. Setochno-kharakteristicheskie metody. ? M.: Nauka, 1988, 288s.;

80. V.I. Golubev, I.B. Petrov. Opyt rascheta sejsmicheskikh otklikov ot krivolinejnykh geologicheskikh granits na osnove ikh yavnogo vydeleniya // Tekhnologii sejsmorazvedki, 2016, № 4, s.45-51.

81. I.B. Petrov, N.I. Khokhlov. Modelirovanie zadach 3D-sejsmiki na vysokoproizvoditel'nykh vychislitel'nykh sistemakh // Matem. modelirovanie, 2014, t.26, №1, s.83-95;

82. V.I. Golubev, I.E. Kvasov, I.B. Petrov. Influence of natural disasters on ground facilities // Math. Models and Computer Simulations, 2012, v.4, №2, p.129-134.

83. I.B. Petrov, A.V. Favorskaya, N.I. Khokhlov, V.A. Miryakha, A.V. Sannikov, V.I. Golubev. Monitoring the state of the moving train by use of high performance systems and modern computation methods // Math. Models and Comp. Simulations, 2015, v.7, №1, p.51-61.

84. K.A. Beklemysheva, A.A. Danilov, I.B. Petrov, V.Yu. Salamatova, Yu.V. Vassilevski, A.V. Vasyukov. Virtual blunt injury of human thorax: Age-dependent response of vascular system // RJNAMM, 2015, v.30, №5, p.259–268.

85. P.I. Agapov, O.M. Belotserkovskij, I.B. Petrov. Chislennoe modelirovanie posledstvij mekhanicheskogo vozdejstviya na mozg cheloveka pri cherepno-mozgovoj travme // ZhVMiMF, 2006, t.46, №9, s.1711-1720.

86. F.B. Chelnokov. Yavnoe predstavlenie setochno-kharakteristicheskikh skhem dlya uravnenij uprugosti v dvumernom i trekhmernom prostranstvakh // Matematicheskoe modelirovanie, 2006, t.18, №6, s.96-108.

87. I.B. Petrov, A.V. Favorskaya. Biblioteka metodov interpolyatsii vysokikh poryadkov na nestrukturirovannykh treugol'nykh i tetraehdral'nykh setkakh // Informatsionnye tekhnologii, 2011, №9, c.30-32.

88. I.B. Petrov, A.V. Favorskaya, A.V. Vasyukov, A.S. Ermakov, K.A. Beklemysheva, A.O. Kazakov, A.V. Novikov. Numerical simulation of wave propagation in anisotropic media // Doklady Mathematics, 2015, v.90, № 3, p.778-780.

Система Orphus

Loading...
Up