Forecasting characteristics of curvilinear motion of a self-driving wheeled vehicle

 
PIIS023408790001923-9-1
DOI10.31857/S023408790001923-9
Publication type Article
Status Published
Authors
Affiliation: Bauman Moscow State Technical University
Address: Russian Federation, Moscow
Affiliation: Bauman Moscow State Technical University
Address: Russian Federation, Moscow
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 10
Pages107-122
Abstract

A spatial nonlinear dynamical model of a passenger car was developed in the multibody simulation software «Universal Mechanism». The model includes spatial models of suspension, steering, brake and transmission systems. Control system and tire mathematical models were developed in the Matlab/Simulink and linked to the vehicle MBS model as DLLs. The control system includes a set of steering, braking and gearbox shifting laws for following a target path. The model was used for the simulation of the passenger car movement on a race course. The results of the simulation proved efficiency of the developed control laws.

Keywordsvehicle dynamics, simulation, tire model, steering system, gearbox, brake system, transmission, multibody simulation software
Received08.11.2018
Publication date14.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1752

Readers community rating: votes 0

1. S. Tsugawa. Vision-based vehicles in Japan: machine vision systems and driving control systems // IEEE Transactions on Industrial Electr., 1994, Aug., p.398-405. DOI:10.1109/41.303790.

2. M. Blundell, D. Harty. The Multibody Systems Approach to Vehicle Dynamics. – Oxford: Elsevier Butterworth-Heinemann, 2004, 518 p.

3. umlab.ru URL: http://www.umlab.ru (data obrascheniya 01.09.2015).

4. euler.ru URL: http://www.euler.ru (data obrascheniya 01.09.2015).

5. simpack.com URL: http://www.simpack.com (data obrascheniya 01.09.2015).

6. www.mscsoftware.com URL: http://www.mscsoftware.com/product/adams (data obrascheniya 01.09.2015).

7. A.S. Gorobtsov, V.A. Shurygin, A.S. D'yakov i dr. Razrabotka matematicheskoj modeli mnogoopornoj transportnoj mashiny dlya perevozki krupnogabaritnykh nedelimykh gruzov // Gruzovik, 2014, №11, c.2-5;

8. A.S. D'yakov, V.I. Ryazantsev, G.G. Ankinovich. Reshenie zadach profil'noj prokhodimosti robototekhnicheskogo kompleksa s kolesno-shagayuschim dvizhitelem s pomosch'yu matematicheskogo modelirovaniya // Nauka i obrazovanie. MGTU im. N.Eh. Baumana. Ehlektron. zhurn., 2014, № 12, c. 291-307. DOI:10/7463/1214.0747961;

9. I.V. Novozhilov, I.S. Pavlov. Priblizhyonnaya matematicheskaya model' kolyosnogo ehkipazha // Izv. RAN. MTT, 1997, № 2, c.196-204;

10. A.V. Vlakhova, I.V. Novozhilov. O vozmuscheniyakh pryamolinejnogo dvizheniya kolyosnogo ehkipazha pri potere stsepleniya odnogo iz kolyos s dorogoj // Mobil'nye roboty i mekhatronnye sistemy, Izdatel'stvo MGU, 2004, s.110-116;

11. A.V. Vlakhova, I.V. Novozhilov. O zanose kolesnogo ehkipazha pri «blokirovke» i «probuksovke» odnogo iz kolyos // Fundament. i prikl. matem., 2005, t.11, № 7, s.11-20;

12. A.V. Vlakhova. Matematicheskie modeli dvizheniya kolesnykh apparatov. – Izhevsk: ANO "Izhevskij institut komp'yuternykh issledovanij", 2014, 148 s;

13. V.E. Pavlovskij, V.N. Ogol'tsov, I.A. Spiridonova, E.V. Pavlovskij. Zadachi upravleniya bespilotnym avtomobilem, ehksperimental'naya realizatsiya v proekte "Avto-NIVA" // Robototekhnika i tekhnicheskaya kibernetika, 2015, №4 (9), c.41-46;

14. A.R. Aliseichik, V.E. Pavlovsky. The model and dynamic estimates for the controllabilityapd comfortability of a multiwheel mobile robot motion // Automation and Remote Control, 2015, v.76, Issue 4, r.675-688.

15. V.A. Gorelov, G.O. Kotiev, A.A. Beketov. Matematicheskaya model' dvizheniya vezdekhodnogo transportnogo sredstva // Zhurnal AAI, 2008, №1, c.50-54;

16. V.A. Gorelov, G.O. Kotiev, S.L. Tropin. «Veernyj» zakon dlya vsekolesnogo rulevogo upravleniya mnogoosnykh kolesnykh transportnykh sredstv // Vestnik MGTU im. N.Eh. Baumana. Mashinostroenie, 2012, №2, c.102-116;

17. V.A. Gorelov, M.M. Zhilejkin, V.A. Shinkarenko. Razrabotka zakona dinamicheskoj stabilizatsii mnogoosnoj kolesnoj mashiny s individual'nym privodom dvizhitelej // Nauka i innovatsii, 2013, № 12 (24), c.20;

18. A.V. Keller, V.A. Gorelov, V.V. Anchukov. Modeling truck driveline dynamic loads at differential locking unit engagement // Procedia Engineering, 2015, v.129, p.280-287.

19. A.V. Keller, V.A. Gorelov, D.S. Vdovin, P.A. Taranenko, V.V. Anchukov. Mathematical model of all-terrain truck // Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, 2015, p.1285-1296.

20. M.M. Zhilejkin, E.V. Yagubova, A.G. Strelkov. Algoritm raboty sistemy dinamicheskoj stabilizatsii za schet upravleniya differentsialami mekhanicheskoj transmissii i korrektiruyuschego podrulivaniya dlya traktora // Izvestiya vysshikh uchebnykh zavedenij. Mashinostroenie, 2014, № 12 (657), s.45-52;

21. V.A. Gorelov, B.B. Kositsyn. Razrabotka kompleksnoj sistemy upravleniya dvizheniem sportivnogo avtomobilya klassa «Formula Student» po zadannoj trasse // Izvestiya vysshikh uchebnykh zavedenij. Mashinostroenie, 2016, № 7, c.45-55;

22. V.A. Gorelov, A.I. Komissarov, A.V. Miroshnichenko. 8×8 wheeled vehicle modeling in a multibody dynamics simulation software // Procedia Engineering, 2015, v.129, p.300-307.

23. V.A. Gorelov, A.I. Komissarov, B.B. Kositsyn. Issledovanie dvizheniya avtomobilya v programmnom komplekse avtomatizirovannogo modelirovaniya dinamiki sistem tel. // Zhurnal avtomobil'nykh inzhenerov, 2016, № 1, c.18-23;

24. G.O. Kotiev, A.S. D'yakov. Metod razrabotki khodovykh sistem vysokopodvizhnykh bezehkipazhnykh nazemnykh transportnykh sredstv // Izvestiya YuFU. Tekhnicheskie nauki, 2016, № 1, c.186-197;

Система Orphus

Loading...
Up