The model of the radiation transport in the matter of heterogeneous materials of the porous type

 
PIIS023408790001918-3-1
DOI10.31857/S023408790001918-3
Publication type Article
Status Published
Authors
Affiliation: Keldysh Institute for Applied Mathematics of RAS
Address: Russian Federation
Affiliation: Keldysh Institute for Applied Mathematics of RAS
Address: Russian Federation
Affiliation: Keldysh Institute for Applied Mathematics of RAS
Address: Russian Federation
Affiliation: Keldysh Institute for Applied Mathematics of RAS
Address: Russian Federation
Affiliation: Keldysh Institute for Applied Mathematics of RAS
Address: Russian Federation
Affiliation: Keldysh Institute for Applied Mathematics of RAS
Address: Russian Federation
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 10
Pages3-20
Abstract

The physical and geometrical models of the heterogeneous porous medium with direct view of its microstructure are worked out. The algorithm of calculating the energy and pulse probability distributions for the particles interacting with the complex chemical compound is developed. The distributions are used for detail modeling of the scattering and absorption processes in complex heterogeneous materials. An approach for the discrete description of the realistic geometry of the heterogeneous porous medium with direct view of its structure at the micro level is elaborated. The approach includes the algorithm of build the detector system for statistical estimation of the radiation energy deposit in an irradiated object. The applications of the developed simulation tool are presented in terms of results obtained with use of the hybrid computing cluster K-100.

Keywordsradiation transport, porous medium, material micro structure
AcknowledgmentThe study was carried out at the expense of the Russian Science Foundation (Project No. 17-71-30014)
Received08.11.2018
Publication date14.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1260

Readers community rating: votes 0

1. M.E. Zhukovskij, S.V. Podolyako, R.V. Uskov. Model' individual'nykh soudarenij dlya opisaniya perenosa ehlektronov v veschestve // Matematicheskoe modelirovanie, 2011, t.23, №6, s.147-160;

2. M.E. Zhukovskij, R.V. Uskov. Modelirovanie vzaimodejstviya gamma-izlucheniya s veschestvom na gibridnykh vychislitel'nykh sistemakh // Matematicheskoe modelirovanie, 2011, t.23, №7, s.20-32 .

3. M.E. Zhukovskij, R.V. Uskov. Matematicheskoe modelirovanie radiatsionnoj ehmissii ehlektronov na gibridnykh superkomp'yuterakh // Vychislitel'nye metody i programmirovanie, 2012, t.13, №1, s.189-197

4. M.E. Zhukovskij, S.V. Podolyako, R.V. Uskov. Modelirovanie perenosa ehlektronov v veschestve na gibridnykh vychislitel'nykh sistemakh // Vychislitel'nye metody i programmirovanie, 2011, t.12, №1, s.152–159

5. M.E. Zhukovskiy, R.V. Uskov. Hybrid Parallelization of the Algorithms of Radiation Cascade Transport Modeling // Mathematical Models and Computer Simulations, 2015, v.7, №6, p.601-610.

6. №6, p.601-610. 6. D.E. Cullen, J.H. Hubbell, L.D. Kissel. EPDL97: the Evaluated Photon Data Library, '97 Version // Lawrence Livermore National Laboratory, 1997, UCRL-50400, v.6, rev.5, 36 p

7. I.M. Sobol'. Chislennye metody Monte-Karlo. – M.: Nauka, 1973, 312 s.

8. PENELOPE – A Code System for Monte Carlo Simulation of Electron and Photon Transport // Workshop Proceedings Issy-les-Moulineaux, France 5–7 (November 2001).

9. Geant4 User's Guide for Application Developers. Geant4 Collaboration. Version: geant4 10.0.6, 2013, http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ ForApplicationDeveloper/html/index.html.

10. M.S. Seltzer. An Overview of ETRAN Monte Carlo Methods // Monte Carlo Transport of Electrons and Photons, edited by T.M. Jenkins, W.R. Nelson, A. Rindi. – New York: Plenum Press, 1988, 153 p.

11. J.A. Halbleib, R.P. Kensek, T.A. Mehlhom, G.D. Valdez, S.M. Se1tzer and M.J. Berger. ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes // Report SAND91–1634, 1992, Sandia National Laboratories, Albuquerque.

12. J.F. Briesmeister. (ed.) MCNP – A General Monte Carlo N-Particle Transport Code // LANL Report LA-13709-M, 2000, Los Alamos.

13. F.H. Stillinger, B.D. Lubachevsky. Crystalline-Amorphous Interface Packings for Disks and Spheres // J. Stat. Phys. 1993, v,73, №3-4, p.497-514.

14. B.D. Lubachevsky, F.H. Stillinger. Geometric properties of random disk packings // J. Statistical Physics, 1990, 60, p.561-583.

15. B.D. Lubachevsky. How to Simulate Billiards and Similar Systems // Journal of Computational Physics, 1991, v.94, №2, p.255-283

16. M. Skoge, A. Donev, F.H. Stillinger, S. Torquato. Packing hard spheres in high dimensional Euclidean spaces // Phys. Rev. E, 041127, 2006, v.74, №4, p.041127-1 -041127-11.

17. F. Preparata, M. Shejmos. Vychislitel'naya geometriya: Vvedenie. – M.: Mir, 1989, 478 s.

18. M.E. Zhukovskiy, V.A. Egorova. Handling of the radiative electron emission modeling results by use of the neural networks // Mathematica Montisnigri, 2017, v. XXXVIII, p.89-99.

Система Orphus

Loading...
Up