views: 1672
Readers community rating: votes 0
1. L.D. Landau, E.M. Lifshitz. Fluid Mechanics, 2nd ed., v.6. – Butterworth-Heinemann, 1987, 552 p.
2. S.K. Godunov. A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations. Transl. US Joint Publ. Res. Serv., JPRS 7226, 1969.
3. S.K. Godunov, A.V. Zabrodin, M.Ia. Ivanov, A.N. Kraiko, G.P. Prokopov. Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki. – M.: Nauka, 1976, 400 s.
4. A.G. Kulikovsky, N.V. Pogorelov, A.Yu. Semenov. Mathematical aspects of numerical solution of hyperbolic systems. Taylor & Francis Inc., 2000.
5. P.G. Le Floch, J.M. Mercier, C. Rohde. Fully discrete, entropy conservative schemes of arbitrary order // SIAM J. Numer. Anal., 2002, v.40, №5, p.1968-1992.
6. F. Lagoutière, C.R. Acad. A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction // Comp. Rendus Math., 2004, v.338, №7, p.549-554.
7. X.-H. Cheng, Y.-F. Nie, J.-H. Feng, X.-Y. Luo, L. Cai. Self-adjusting entropy-stable scheme for compressible Euler equations // Chinese Physics B, 2015, v.24, №2.
8. H. Zakerzadeh, U.S. Fjordholm. High-order accurate, fully discrete entropy stable schemes for scalar conservation laws // IMA J. of Numerical Analysis, 2016, v.36, №2, p.633-654.
9. U.S. Fjordholm, R. Käppeli, S. Mishra, E. Tadmor. Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws // Found. Comp. Math., 2017, v.17, №3, p.763-827.
10. T. Chen, Ch.-W. Shu. Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws // J. Comp. Phys., 2017, v.345, p.427-461.
11. G.A. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws // J. Comp. Phys., 1978, v.27, №1, p.1-31.
12. B. Einfeldt, C.D. Munz, P.L. Roe, B. Sjogren. On Godunov-type methods near low densities // J. Comp. Phys., 1991, v.92, №2, p.273-295.
13. M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin. Application of averaging to smooth the solution in DG method // Preprint KIAM RAS, 2017, № 89, 32 s.
14. M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin. Impact of Different Limiting Functions on the Order of Solution Obtained by RKDG // Math. Mod. & Comp. Simul., 2013, v.5, №4, p.346-349.
15. M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, D.I. Utiralov. The no-slip boundary conditions for discontinuous Galerkin method // Preprint KIAM RAS, 2014, №32, 16 s.
16. M.E. Ladonkina, V.F.Tishkin. Godunov method: a generalization using piecewise polynomial approximations // Diff. Equations, 2015, v. 51, № 7, p.895-903.
17. M.E. Ladonkina, V.F.Tishkin. On Godunov type methods of high order of accuracy // Doklady Mathematics, 2015, v.91, №2, p.189-192.
18. V.F. Tishkin, V.T. Zhukov, E.E. Myshetskaya. Justification of Godunov’s scheme in the multidimensional case // Math. Mod. & Comp. Simul., 2016, v.8, №5, p.548-556.
19. B. Cockburn. An Introduction to the Discontinuous Galerkin Method for ConvectionDominated Problems, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations // Lecture Notes in Mathematics, 1998, v.1697, р.151-268.
20. D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems // SIAM J. on Numer. Anal., 2002, 29, p.1749-1779.