Godunov type method and the Shafranov's task for multi-temperature plasma

 
PIIS023408790000607-1-1
DOI10.31857/S023408790000607-1
Publication type Article
Status Published
Authors
Affiliation: Institute for Computer Aided Design, Russian Academy of Sciences
Address: Russian Federation, Moscow
Affiliation: Keldysh Institute of Applied Mathematics of RAS
Address: Russian Federation
Affiliation: Institute for Computer Aided Design, Russian Academy of Sciences, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
Address: Russian Federation, Moscow
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 9
Pages51-71
Abstract

New multi-temperature code for the multi-component gas-dynamic was tested. The velocities of all components with nonzero masses are assumed to be identical. Method operates with the table equation of state. Method can include in the consideration the electron heat conduction, the radiation transfer, the exchange the energy between the components, and the chemical reactions. The gas-dynamic part is based on the Godunov approach with the effective approximate Riemann problem solver and the model of the local equation of state. The goal of the investigation is the test of the development of the code and the ''exact'' solution of the Shafranov task for the shock wave in the hydrogen plasma.

Keywordsmulti-temperature plasma, equation of state, Godunov type scheme
Received28.09.2018
Publication date04.10.2018
Number of characters691
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1449

Readers community rating: votes 0

1. S.K. Godunov. Raznostnyj metod rascheta udarnykh voln // Uspekhi matematicheskikh nauk, 1957, 12:1(73), 176-177.

2. G.V. Vereshchagin and A.G. Aksenov // Relativistic Kinetic Theory, 2017.

3. S.K. Godunov. Raznostnyj metod chislennogo rascheta razryvnykh reshenij uravnenij gidrodinamiki // Matematicheskij sbornik, 1959, 47(89)3, 271-306.

4. P. Colella and P.R. Woodward. The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations // Journal of Computational Physics, 1984, 54, 174.

5. P.L. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes // Journal of Computational Physics, 1997, 135, 250.

6. P. Colella and H.M. Glaz. Efficient Solution Algorithms for the Riemann Problem for Real Gases // Journal of Computational Physics, 1985, 59, 264.

7. M.M. Basko, M.D. Churazov, and A.G. Aksenov. Prospects of heavy ion fusion in cylindrical geometry // Laser and Particle Beams, 2002, 20, 411-414.

8. S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, Y.V. Petrov and V.A. Kho-khlov. Ablated matter expansion and crater formation under the action of ultrashort laser pulse // Soviet Journal of Experimental and Theoretical Physics, 2006, 103, 183-197.

9. V.E. Fortov, D.H. Hoffmann, and B.Y. Sharkov. Reviews of topical problems: Intense ion beams for generating extreme states of matter // Physics Uspekhi, 2008, 51(2), 109-131.

10. S.W. Bruenn. Stellar core collapse: numerical model and infall epoch // ApJS, 1985, 58, 771.

11. M. Pelanti and K.-M. Shyue. A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves // Journal of Computational Physics, 2014, 259, 331-357.

12. V.T. Zhukov, V.T. Zabrodin, O.V. Feodoritova. Metod resheniya dvumernykh uravnenij dinamiki teploprovodnogo gaza v oblastyakh slozhnoj formy // Zhurnal vychislitel'-noj matematiki i matematicheskoj fiziki, 1993, 33:8, 1240-1250.

13. G.H. Miller and E.G. Puckett. A high-order Godunov method for multiple condensed phases // Journal of Computational Physics, 1996, 128, 134-164.

14. A.G. Aksenov and M.D. Churazov. Ignition problems for advanced fuel // Nuclear Instruments and Methods in Physics Research, 2001, A 464, 180-184.

15. A.G. Aksenov and M.D. Churazov. Deuterium targets and the MDMT code // Laser and Particle Beams, 2003, 21(1), 81-84.

16. A.G. Aksenov, M.D. Churazov, A.A. Golubev, D.G. Koshkarev, and E.A. Zabrodina. Cylindrical targets for heavy ions fusion // Nuclear Instruments and Methods in Physics Research, 2005, A 544, 412.

17. V.M. Chechetkin, A.G. Aksenov. Mekhanizm vzryva sverkhnovykh s uchastiem nejtrino // Yadernaya fizika, 2018, 81(1), accepted.

18. V.D. Shafranov. Struktura udarnoj volny v plazme // ZhEhTF, 1957, 5, 1183.

19. A.G. Aksenov. Computation of shock waves in plasma // Computational Mathematics and Mathematical Physics, 2015, 55, 1752.

20. M.M. Basko. Metallic equation of state in the maen ion approximation // Sov. J. Plasma Phys., 1984, 10, 689-694.

21. C.W. Gear. Numerical initial value problems in ordinary differential equations // Prentice-Hall, Inc. Englewood Cliffs. New Jersey: 1971.

Система Orphus

Loading...
Up