The Rayleigh-Taylor instability development in the equatorial ionosphere and an initial irregularities geometry

 
PIIS023408790000605-9-1
DOI10.31857/S023408790000605-9
Publication type Article
Status Published
Authors
Affiliation: Kant Baltic Federal University
Address: Russian Federation, Kaliningrad
Affiliation: Kant Baltic Federal University
Address: Russian Federation, Kaliningrad
Affiliation: Kant Baltic Federal University
Address: Russian Federation, Kaliningrad
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 9
Pages21-32
Abstract

The numerical modeling was carried out for the equatorial Earth ionosphere F-region of conditions by means of the two-dimensional mathematical MI2 model coordinated electrodynamically. It is shown that ionospheric bubbles development time rather strongly depends on the vertical scale of the initial irregularity and strongly depends on the horizontal scale. The ionospheric bubbles developed more slowly at instability generation by a plasma increase, than at instability generation by plasma decrease. Three metric thresholds at initial irregularity scale increase are found experimentally.

Keywordsionosphere, Rayleigh Taylor instability, mathematical modeling, numerical modeling, initial perturbation, metric threshold
Received04.10.2018
Publication date04.10.2018
Number of characters585
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1525

Readers community rating: votes 0

1. S.L. Ossakow, S.T. Zalesak, B.E. McDonald, P.K. Chaturvedi. Nonlinear equatorial spread-F: Dependence of altitude of the F-peak and bottomside background electron density gradient scale length // J. Geophys. Res., 1979, v.A84, №1, p.17-39.

2. C.R. Martinis, M.J. Mendillo, J. Aarons. Toward a synthesis of equatorial spread-F onset and suppression during geomagnetic storms // Ibid, v.110, A07306, doi:10.1029/ 2003JA0101362, 2005.

3. H. Kil, R.A. Heelis, L.J. Paxton., S.J. Oh. Formation of a plasma depletion shell in the equatorial ionosphere // Ibid, 2009, v.114, №11, A11302.

4. D.L. Hysell, E. Kudeki, J.L. Chau. Possible ionospheric preconditioning by shear flow leading to equatorial spread F // Annales Geophysicae, 2005, v.23, p.2647-2655.

5. S.T. Zalesak, S.L. Ossakow, P.K. Chaturvedi. Nonlinear equatorial spread-F: the effect of neutral winds and background Pedersen conductivity // J. Geophys. Res., 1982, v.87, №1, p.151-166.

6. B.N. Gershman. Dinamika ionosfernoj plazmy. – M.: Nauka, 1974.

7. S.V. Matsievskij, N.M. Kaschenko, S.A. Ishanov, L.V. Zinin. 3D-modelirovanie ehkvatorial'nogo F-rasseyaniya: sravnenie modelej MI3 i SAMI3 // Vestnik Baltijskogo federal'nogo universiteta im. I. Kanta, 2013, vyp.4, s.102-105.

8. N.M. Kaschenko, S.V. Matsievskij. Matematicheskoe modelirovanie neustojchivostej ehkvatorial'nogo F-sloya ionosfery. Vestnik Kaliningradskogo gosudarstvennogo universiteta. Ser. Informatika i telekommunikatsii, 2003, vyp.3, s.59-68.

9. M.N. Fatkullin, Yu.S. Sitnov. Dipolyarnaya sistema koordinat i ee nekotorye osobennosti // Geomagnetizm i aehronomiya, 1972, t.12, №2, s.333-335.

10. A.E. Hedin, J.E. Salah, J.V. Evans et al. A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 1. N2 density and temperature // J. Geophys. Res., 1977, v.82. №A1, p.2139-2147.

11. A.E. Hedin, C.A. Reber, G.P. Newton et al. A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 2. Composition // Ibid, 1977, v.82, №A1, p.2148-2156.

12. Guide to reference and standard ionosphere models. American Institute of Aeronautics and Astronautics, 2011.

13. J.D. Huba, G. Joyce, J. Krall. Three-dimensional modeling of equatorial spread F / Aeronomy of the Earth's atmosphere and ionosphere. IAGA Special Sopron Book Series, 2011, v.2, p.211-218.

14. V.V. Medvedev, S.A. Ishanov, V.I. Zenkin. Self-consistent model of the lower ionosphere // Geomagnetism and Aeronomy, 2002, v.42, №6, p.745-754.

15. V.V. Medvedev, S.A. Ishanov, V.I. Zenkin. Effect of vibrationally excited nitrogen on recombination in ionospheric plasma // Ibid, 2003, v.43. №2, p.231-238.

16. S.A. Ishanov, L.V. Zinin, S.V. Klevtsur, S.V. Matsievskij, V.I. Savel'ev. Modelirovanie dolgotnykh variatsij parametrov ionosfery Zemli // Mat. mod., 2016, t.28, №3, s.64-78.

17. D.N. Anderson, P.A Berhardt. Modelling the effects of an H-gas release on the equatorial ionosphere // J. Geophys. Res., 1978, v.83, №15, p.4777–4790.

18. P.A. Bernhardt. Three-Dimensional, Time-Dependent Modeling of Neutral Gas Diffusion in a Nonuniform, Chemically Reactive Atmosphere // Ibid, 1979, v.84, p.793-802.

19. M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, V.S. Chevanin. Ob odnom variante suschestvenno neostsilliruyuschikh raznostnykh skhem vysokogo poryadka tochnosti dlya sistem zakonov sokhraneniya // Matematicheskoe modelirovanie, 2009, t.21, №11, s.19-32.

20. A.V. Safronov. Otsenka tochnosti i sravnitel'nyj analiz raznostnykh skhem skvoznogo scheta povyshennogo poryadka // Vych. metody i programmir., 2010, t.11, №1, s.137-143.

21. B. Van Leer. Upwind and high-resolution methods for compressible flow: from donor cell to residual-distribution schemes // Commun. Comp. Phys., 2006, v.6, p.192-206.

Система Orphus

Loading...
Up