Direct numerical simulation of moderately rarefied gas flow within core samples

 
PIIS023408790000604-8-1
DOI10.31857/S023408790000604-8
Publication type Article
Status Published
Authors
Affiliation: Keldysh Institute of Applied Mathematics RAS
Address: Russian Federation, Moscow
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 9
Pages3-20
Abstract

The paper is devoted to numerical simulation of isothermal moderately rarefied gas flows within three-dimensional spaces with complex voxel geometry corresponding to core (rock) samples pore space. Classical Maxwell slip boundary conditions are used to take into account slippage effect on the solid boundaries. Simulation results for several core samples under different averaged pressure are presented. The qualitatively right Klinkenberg slippage coefficient dependence on absolute permeability coefficient was obtained. 

Keywordsquasi-hydrodynamic equations, digital rock physics, slippage effect, slip boundary condition, Klinkenberg slippage coefficient, moderately rarefied gas, voxel geometry
Received28.09.2018
Publication date04.10.2018
Number of characters559
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1554

Readers community rating: votes 0

1. C. Soulaine, F. Gjetvaj, C. Garing, S. Roman, A. Russian, P. Gouze, H.A. Tchelepi. The Impact of Sub-Resolution Porosity of X-ray Microtomography Images on the Permeability // Transport in Porous Media, 2016, v.113, №1, p.227-243.

2. M.J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, C. Pentland. Pore-scale imaging and modelling // Advances in Water Resources, 2013, v.51, p.197-216.

3. H. Dong, M.J. Blunt. Pore-network extraction from micro-computerized-tomography images // Phys. Rev. E, 2009, v.80, №3, p.036307.

4. P. Ranut, E. Nobile, L. Mancini. High resolution X-ray microtomography-based CFD simulation for the characterization of flow permeability and effective thermal conductivity of aluminum metal foams // Experimental Thermal and Fluid Science, 2015, v.67, p.30-36.

5. J. Escoda, F. Willot, D. Jeulin, J. Sanahuja, C. Toulemonde. Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image // Cement and Concrete Research, 2011, v.41, №5, p.542-556.

6. V.A. Balashov. Pryamoe modelirovanie techenij umerenno-razrezhennogo gaza v dvumernykh model'nykh poristykh sredakh // Matematich. modelir., 2018, t.30, №1, s.3-16.

7. Yu.V. Sheretov. Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii. – M.-Izhevsk: NITs «Regulyarnaya i khaoticheskaya dinamika», 2009. 400 c.

8. B.N. Chetverushkin. Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenij. – M.: MAKS Press, 2004, 332 c.

9. T.G. Elizarova. Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenij. – M.: Nauchnyj mir, 2007, 352 c.

10. GOST 26450.2-85 Porody gornye. Metody opredeleniya kollektorskikh svojstv. Metod opredeleniya koehffitsienta absolyutnoj gazopronitsaemosti pri statsionarnoj i nestatsionarnoj fil'tratsii.

11. L.J. Klinkenberg. The permeability of porous media to liquids and gases // Drilling and Production Practice, American Petroleum Institute, 1941, p.200-213.

12. M.N. Kogan. Dinamika razrezhennogo gaza. – M.: Nauka, 1967, 440 s.

13. D.V. Sivukhin. Obschij kurs fiziki. T.II. Termodinamika i molekulyarnaya fizika. – M.: Fizmatlit, 2003, 576 s.

14. A.A. Zlotnik. O konservativnykh prostranstvennykh diskretizatsiyakh barotropnoj kvazigazodinamicheskoj sistemy uravnenij s potentsial'noj massovoj siloj // Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki, 2016, t.56, №2, c.301-317.

15. V.A. Balashov, V.E. Borisov. Algoritm rascheta trekhmernykh techenij umerenno-razrezhennogo gaza v oblastyakh s voksel'noj geometriej // Preprint IPM im. M.V.Keldysha, 2017, №99, 24 s. doi:10.20948/prepr-2017-99 URL: http://library.keldysh.ru/ preprint.asp?id=2017-99.

16. Imperial College London. URL: http://www.imperial.ac.uk/earth-science/research/research -groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/.

17. K.S. Basniev, N.M. Dmitriev, R.D. Kanevskaya, V.M. Maksimov. Podzemnaya gidromekhanika. – M.-Izhevsk: Institut komp'yuternykh issledovanij, 2006, 488 s.

18. D.A. Bikulov. Modelirovanie yavlenij perenosa v poristykh sredakh na gibridnykh superkomp'yuternykh sistemakh. – M.: MGU im. M.V. Lomonosova, 2015, diss. ... kand. fiz.-mat. nauk.

19. W. Degruyter, A. Burgisser, O. Bachmann, O. Malaspinas. Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices // Geosphere, 2010, v.6, №5, p.470-481.

20. Palabos: Parallel lattice Boltzmann solver. URL: http://www.palabos.org/.

21. F.I. Kotyakhov. Fizika neftyanykh i gazovykh kollektorov – M.: Nedra, 1977, 287 s.

22. D. Tiab, E.C. Donaldson. Petrophysics. Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. Fourth edition. Gulf Professional Publishing, 2015, p.918.

23. G.H. Tang, W.Q. Tang, Y.L. He. Gas slippage effect on microscale porous flow using the lattice Boltzmann method // Physical review E, 2005, v.72, №5, p.056301.

24. J. Gao, Q. Yu, X. Lu. Apparent Permeability and Gas Flow Behavior in Carboniferous Shale from the Qaidam Basin, China: An Experimental Study // Transp. Porous Med., 2017, v.116, №2, p.585-611.

25. N. Saxena, R. Hofmann, F.O. Alpak, J. Dietderich, S. Hunter. Effect of image segmentation & voxel size on micro-CT computed effective transport & elastic properties // Marne and Petroleum Geology, 2017, v.86, p.972–990.

26. J.G. Heid, J.J. McMahon, R.F. Nielsen, S.T. Yuster. Study of the Permeability of Rocks to Homogeneous Fluids // American Petroleum Institute, Drilling and Production Practice, 1950, p.230-44.

27. F.O. Jones, W.W. Owens. A Laboratory Study of Low-Permeability Gas Sands // Journal of Petroleum Technology, 1980, v.32, №9, p.1631-1640.

28. W. Tanikawa, T. Shimamoto. Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks // International Journal of Rock Mechanics and Mining Sciences, 2009, v.46, № 2, p.229-238.

Система Orphus

Loading...
Up