views: 1817
Readers community rating: votes 0
1. A.A. Samarskii, A.P. Mikhailov. Matematicheskoe modelirovanie. – M.: Fismatlit, 1997.
2. A.P. Mikhailov, N.V. Kliusov. O svoistvah prosteishei matematicheskoi modeli rasprostraneniia informatsionnoi ugrozy // Matematicheskoe modelirovanie sotsialnykh protsessov, vyp. 4. – M.: Maks Press, 2002, с.115-123.
3. D. Yanagizawa-Drott. Propaganda and Conflict: Evidence from the Rwandan Genocide // The Quarterly Journal of Economics, 2014, 129(4), p.1947–1994. doi: 10.1093/qje/qju020.
4. N.A. Marevtseva. Prosteishie matematicheskie modeli informatsionnogo protivoborstva. Seriia "Matematicheskoe modelirovanie i sovremennye informatsionnye tekhnologii", vyp.8 // Sbornik trudov Vrerossiiskikh nauchnykh molodezhnykh shkol. – Rostov-na-Donu: izd. Iuzhnogo federalnogo universiteta, 2009, с.354-363.
5. A.P. Mikhailov, N.A. Marevtseva. Models of information warfare // Mathematical Models and Computer Simulations, 2011, v.4, №3, p.251–259.
6. A.P. Petrov, O.G. Proncheva. Issledovanie modeley informatsionnogo napadeniya i informatsionnogo protivoborstva v strukturirovannom sotsiume / Matematicheskoe modelirovanie sotsialnykh protsessov, vyp.17. Pod red. A.P .Mikhaylova. – M.: Ekoninform, 2015, s.136-149.
7. D.J. Daley, D.G. Kendall. Stochastic Rumors // Journal of the Institute of Mathematics and its Applications, 1964, v.1, p.42–55.
8. D.P. Maki, M. Thompson. Mathematical Models and Applications. – Prentice-Hall. Englewood Cliffs, 1973.
9. S. Belen. The behaviour of stochastic rumours // PhD Thesis, The University of Adelaide, 2008.
10. S. Belen, C.E.M. Pearce. Rumours with general initial conditions. ANZIAM J., 4, 2004, p.393-400.
11. M. Nekovee, Y. Moreno, G. Bianconi, M. Marsili. Theory of Rumor Spreading in Complex Social Networks // Physica A, 2007, 374, p.457–470.
12. M. Kitsak et al. Identification of influential spreaders in complex networks // Nature physics, 2010, v.6, №11, p.888.
13. L. Zhao et al. SIHR rumor spreading model in social networks // Physica A: Statistical Mechanics and its Applications, 2012, v.391, №7, p.2444-2453.
14. V.A. Shvedovskii. Modelirovanie rasprostraneniia informatsii v smezhnykh sotsialnykh gruppax / Matematicheskie metody v sotsiologicheskom issledovanii. – M.: Nauka, 1981, s.207-214.
15. G.K. Osei, J.W. Thompson. The supersession of one rumour by another // J. of Applied Probability, 1977, v.14, №1, p.127-134.
16. D.A. Gubanov, D.A. Novikov, A.G. Chkhartishvili. Sotsialnye seti: modeli informatsionnogo vliianiia, upravleniia i protivoborstva. M. – Fizmatlit, 2010, 228 s.
17. A.G. Chkhartishvili, D.A. Gubanov. Analysis of User Influence Types in Online Social Networks: An Example of VKontakte // Proceedings of the 11th IEEE International Conference on Application of Information and Communication Technologies (AICT2017, Moscow). М.: IEEE, 2017, v.1, p.3-5.
18. V.V. Breer, D.A. Novikov, A.D. Rogatkin. Mob Control: Models of Threshold Collective Behavior. – Springer, 2017, v.85.
19. C. Kaligotla, E. Yücesan, S.E. Chick. An agent based model of spread of competing rumors through online interactions on social media // Proceedings of the 2015 Winter Simulation Conference, IEEE Press, 2015, p.3985-3996.
20. R. Escalante, M.A. Odehnal. Deterministic mathematical model for the spread of two rumors. arXiv:1709.01726 [physics.soc-ph]
21. A.P. Petrov, A.I. Maslov, N.A. Tsaplin. Modeling Position Selection by Individuals during Information Warfare in Society // Mathematical Models and Computer Simulations, 2016, v.8, №4, p.401–408, doi:10.1134/S2070048216040141. http://link. springer.com/article/10.1134/S2070048216040141.
22. A.P. Mikhailov, A.P. Petrov, O.G. Proncheva. Modeling the effect of political polarization on the outcome of propaganda battle // Computational mathematics and information technologies, 2017, №1, p.65–81. http://cmit-journal.ru/publications/1-2017/
23. N. Rashevsky. Outline of a Physico-mathematical Theory of Excitation and Inhibition // Protoplasma, 1933.
24. N. Rashevsky. Mathematical Biophysics: Physico-Mathematical Foundations of Biology. – Univ. of Chicago: Chicago Press, 1938.
25. A.P. Mikhailov, A.P. Petrov, O.G. Proncheva, N.A. Marevtseva. A Model of Information Warfare in a Society Under a Periodic Destabilizing Effect // Mathematical Models and Computer Simulations, 2017, v.9, №5, p.580–586. DOI: 10.1134/S2070048217050106.