Солнечный ветер и гелиосферная токовая система в годы максимума и минимума солнечной активности

 
Код статьиS002342060002492-9-1
DOI10.31857/S002342060002492-9
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация: Финансовый университет при правительстве РФ
Адрес: Российская Федерация, Москва
Аффилиация:
Институт космических исследований РАН
Институт земного магнетизма, ионосферы и распространения радиоволн им. Пушкова РАН
Адрес: Российская Федерация, Москва
Аффилиация:
Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына МГУ им. М.В. Ломоносова, г. Москва
Институт космических исследований РАН, г. Москва
Адрес: Российская Федерация, Москва
Аффилиация: Институт земного магнетизма, ионосферы и распространения радиоволн им. Пушкова РАН
Адрес: Российская Федерация, Москва
Аффилиация:
Физический факультет МГУ им. М. Ломоносова
Национальный исследовательский университет «Высшая школа экономики»
Адрес: Российская Федерация, Москва
Аффилиация: Институт космических исследований РАН
Адрес: Российская Федерация, Москва
Название журналаКосмические исследования
ВыпускТом 56 Номер 6
Страницы394-403
Аннотация

В рамках осесимметричной МГД-модели солнечного ветра проведен анализ магнитного поля Солнца в двух фазах солнечного цикла: минимума активности, когда доминирует дипольное магнитное поле и максимума, когда преобладает квадрупольное поле. Показано, что в период максимума солнечной активности гелиосферный токовый слой приобретает конусообразную форму и смещается в область высоких широт до 30˚ над плоскостью эклиптики. В противоположном полушарии на тех же широтах устанавливается второй токовый слой конической формы с азимутальным током противоположного направления. Показано, что профили основных характеристик солнечного ветра укручаются с расстоянием от Солнца, а их амплитуды уменьшаются, причем для квадрупольного магнитного поля зависимости основных характеристик солнечного ветра имеют более сложный характер. Сравнение результатов модели с осредненными характеристиками солнечного ветра показывает хорошее соответствие между наблюдаемыми величинами и модельными параметрами.

Ключевые слова
Получено19.12.2018
Дата публикации25.12.2018
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 1108

Оценка читателей: голосов 0

1. Balogh A., Erdõs G. The Heliospheric Magnetic Field // Space Sci. Rev. 2013. V. 176. P. 177.

2. Parker E. N. Dynamics of the interplanetary gas and magnetic fields // Astrophys. J. 1958. V. 128. P. 664.

3. Parker E. N. Dynamical theory of the solar wind // Space Sci. Rev. 1965. V. 4. P. 666.

4. Woo R, Habbal S. R. Imprint of the Sun on the Solar Wind // Astrophys. J. 1999. V. 510. P. L69.

5. Pogorelov N., Fichtner V., Czechowski H. et al. Heliosheath processes and the structure of the heliopause: energetic particles, cosmic rays and magnetic fields // Sp. Sci. Rev. 2017. V. 212. P. 193–248.

6. Hoeksema J. T. The large-scale structure of the heliospheric current sheet during the ULYSSES Epoch // Sp. Sci. Rev. 1995. V. 72. P. 137.

7. Hundhausen A. J. in: Coronal expansion and solar wind. in Cosmic Winds and the Heliosphere. Ed. J. R. Jokipii, Sonett C. S., Giampappa M. S. Univ. Ariz. Press. Tucson. 1997. P. 259.

8. Jones G. H., Balogh. A. Context and heliographic dependence of heliospheric planar magnetic structures // J. Geophys. Res. 2000. V. 105. Issue A6. P. 12713–12724

9. Wilcox J. M., Hoeksema J. T., Scherrer. P. H. Origin of the warped heliospheric current sheet // Science. 1980. V. 209. P. 603.

10. Mursula K., Hiltula T. Systematically asymmetric heliospheric magnetic field: evidence for a quadrupole mode and non-axisymmetry with polarity flipflops // Sol. Phys. 2004. V. 224. P. 133.

11. Bavassano B., Woo R., Bruno R. Heliospheric plasma sheet and coronal streamers // Geophys. Res. Lett. 1997. V. 24. P. 1655.

12. Wang Y.-M., Sheeley N. R., Jr., Walters J. H. et al. Origin of streamer material in the outer corona // Astrophys. J. 1998. V. 498. P. L165.

13. Smith E. J. The heliospheric current sheet // J. Geophys. Res. 2001. V. 106. P. 15.819.

14. Еселевич М.В., Еселевич В.Г. Пояс стримеров в короне Солнца и на орбите Земли // Геомагне- тизм и аэрономия. 2007. Т. 47. С. 309.

15. Balogh A. Magnetic fields in the inner heliosphere // Sp. Sci. Rev. 1998. V. 83. P. 93.

16. Winterhalter D., Smith E. J., Burton M. E. et al. The heliospheric current sheet // J. Geophys. Res. 1994. V. 99. P. 6667.

17. Wilcox J. M., Ness N. F. Quasi-stationary corotating structure in the interplanetary medium // J. Geophys. Res. 1965. V. 70. P. 5793.

18. Svalgaard L., Wilcox J. M. , Scherrer P. H. et al. The Sun’s magnetic sector structure // Sol. Phys. 1975. V. 45. P. 83.

19. Israelevich P. L., Gombosi T. I., Ershkovich A. I. et al. MHD simulation of the three-dimensional structure of the heliospheric current sheet // Astron. Astrophys. 2001. V. 376. P. 288.

20. Veselovsky I. S., Zhukov A. N., Panasenco O. A. Reversal of heliospheric magnetic field polarity: Theoretical model // Sol. Syst. Res. 2002. V. 36. P. 80.

21. Lacombe C., Salem C., Mangeney A., et al. Latitudinal distribution of the solar wind properties in the low- and high-pressure regimes: Wind observations // Ann. Geo. 2000. V. 18. P. 852.

22. Liu Y. C.-M., Huang J., Wang C. et al. A statistical analysis of heliospheric plasma sheets. heliospheric current sheets. and sector boundaries observed in situ by STEREO // J. Geophys. Res. 2014. V. 119. P. 8721.

23. Kislov R.A., Khabarova O.V., Malova H.V. A new stationary analytical model of the heliospheric current sheet // J. Geophys. Res. 2015. V. 120. C. 1–19. doi: 10.1002/2015JA021294

24. Malova H.V., Popov V.Yu., Grigorenko E.E. et al. Evidence for quasi-adiabatic motion of charged particles in strong current sheets in the solar wind. Astrophys. J. 2017. V. 834. P. 1–9. doi: 10.3847/1538-4357/834/1/34

25. Burlaga L. F., Ness N. F. Global patterns of heliospheric magnetic field Polarities and elevation angles: 1990 through 1995 // J. Geophys. Res. 1997. V. 102. P. 9731.

26. Erdõs G., Balogh A. The symmetry of the Heliospheric Current Sheet as observed by Ulysses during the fast latitude scan // Geophys. Res. Lett. 1998. V. 25. P. 245.

27. Hu Y.Q., Feng X.S., Wu S.T., et al. Threedimensional MHD modeling of the global corona throughout solar cycle 23 //J. Geophys. Res. 2008. V. 113. P. A03106. doi:10.1029/2007JA012750

28. Jones G. H., Balogh A. Planar structuring of magnetic fields at solar minimum and maximum // Sp. Sci. Rev. 2001. V. 97. P. 165.

29. Smith E. J., Neugebauer M ., Balogh A. et al. Disappearance of the heliospheric sector structure at Ulysses // Geophys. Res. Lett. 1993. V. 20. P. 2327.

30. Hoeksema J. T., Wilcox J.M., Scherrer P. H. The Structure of the Heliospheric Current Sheet 1978- 1982 // J. Geophys. Res. 1983. V. 88. P. 9910.

31. Levine R.H., Schulz M., Frazier E.N. Simulation of the magnetic structure of the inner heliosphere by means of a non-spherical source surface. // Sol. Phys. 1982. V.77. P. 363.

32. Smith E. J., A. Balogh, Forsyth R. F. et al. Recent observations of the heliospheric magnetic field at Ulysses: return to low latitude // Adv. Space Res. 2000. V. 26. P. 823-832.

33. Sýkora J., Badalyan O.G., Obridko V. N. Relationship between the coronal shape and the magnetic field topology during the solar cycle // Adv. Space Res. 2002. V. 29. P. 395.

34. Petrie G. J. D., Haislmaier K. J. Low-latitude coronal holes, decaying active regions and global coronal magnetic structure // Astrophys. J. 2013. V. 775. Art. id. 100. P. 1–14.

35. Simpson J. A., Zhang M., Bame. S. A solar polar north-south asymmetry for cosmic-ray propagation in the heliosphere: the ulysses pole-to-pole rapid transit // Astrophys. J. Lett. 1996. V. 465. P. L69.

36. Heber B., Droge W., Kunow H. et al. Spatial variation of >106 Mev proton fluxes observed during the Ulysses rapid latitude scan: Ulysses COSPIN/KET results // Geophys. Res. Lett. 1996. V. 23. P. 1513.

37. Wang Y.-M. Solar Cycle Variation of the Sun’s Low-Order Magnetic Multipoles: Heliospheric Consequence // Sp. Sci. Rev. 2014. V. 186. P. 387.

38. Usmanov A. V., Goldstein M. L., Matthaeus W.H. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity // Astrophys. J. 2014. V. 788. P. 1–18

39. Banaszkiewicz M., Axford W.I., McKenzie J.F. An analytic solar magnetic field model // Astron. Astrophys. 1998. V. 337. P. 940.

40. Réville V., Brun A.S., Matt S.P. et al. The effect of magnetic topology on thermally driven wind: toward a general formulation of the braking law // The Astrophysical Journal. 2015. V. 798. P. 1–15. doi: 10.1088/0004-637X/798/2/116

41. Маевский Е.В., Кислов Р.А., Малова Х.В., и др. Модель солнечного ветра в гелиосфере на низких и высоких широтах // Физика плазмы. 2018. Т. 44. C. 89.

42. Crooker N. U., Siscoe G . L., Shodhan S. et al. Multiple Heliospheric Current Sheets and Coronal streamer belt dynamics // J. Geophys. Res. 1993. V. 98. P. 9371.

43. Bazilevskaya G. A., Cliver E. W., Kovaltsov G. A. et al. Solar cycle in the heliosphere and cosmic rays // Sp. Sci. Rev. 2014. V. 186. P. 409.

44. Eselevich V. G., Fainshtein. V. G. The heliospheric current sheet (HCS) and high-speed solar wind – interaction effects // Planet. Sp. Sci. 1991. V. 39. P. 1123.

45. De Keyser J., Roth M., Forsyth R., Reisenfeld D. Ulysses observations of sector boundaries at aphelion // J. Geophys. Res. 2000. V. 105. P. 15689.

Система Orphus

Загрузка...
Вверх