Using the Along-Track Altimeter Data for a Verifi cation of the Numerical Wave Models

 
PIIS020596140002353-9-1
DOI10.31857/S020596140002353-9
Publication type Article
Status Published
Authors
Affiliation: Institute of Atmospheric Physics A.M. Obukhov RAS
Address: Russian Federation
Affiliation: Institute of Atmospheric Physics A.M. Obukhov RAS
Address: Russian Federation
Affiliation: Institute of Atmospheric Physics A.M. Obukhov RAS
Address: Russian Federation
Affiliation: Marine Hydrophysical Institute
Address: Russian Federation
Journal nameIssledovanie Zemli iz kosmosa
EditionIssue 4
Pages20-31
AbstractUsing the AVISO altimetry data for the period 2013–2016, the technology is realized for extracting along-track altimeter data in their binding to the data of irregular buoy measurements and numerical wave-simulation data on a regular space-time grid. The latter data were obtained by us with the two wave models: WAM and its modifi ed version – WAM-M. A joint and separate calibration of the satellite data for each satellite was carried out, using a system of 41 buoys. Then, both calibrations were used to estimate the mean-square-root errors (RMSE) for deviations of the wind-wave simulation data in the Indian Ocean from the corresponding altimetry data. It is established that the type of calibration does not signifi cantly aff ect the investigated RMSE, but the RMS values themselves have a signifi cant variability over the space. The possibility is shown for establishing advantages of one numerical model over other, by using values of RMSE both in various zones of the Indian Ocean and the ocean as a whole. The reasons for intermittency of the RMSE values for the models used are discussed, in dependence on the zone of the Indian Ocean.
Keywordsaltimetry, along-track data, calibration, verifi cation of the wave model
Received22.12.2018
Publication date22.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1315

Readers community rating: votes 0

1. Bondur V.G. Aehrokosmicheskie metody v sovremennoj okeanologii // Novye idei v okeanologii. 2004. T. 1. S. 55–117.

2. Bondur V.G., Krapivin V.F., Savinykh V.P. Monitoring i prognozirovanie prirodnykh katastrof. M.: Nauchnyj mir, 2009. 692 s.

3. Golitsyn G.S., Polnikov V.G., Pogarskij F.A. i dr. Otchet o NIR za 3 ehtap po GK 11.519.11.5023. 2013. TsITIS, registratsionnyj № 02201357201.

4. Kubryakov A. A., Polnikov V.G., Pogarskij F.A., Stanichnyj S.V. Sravnitel'noe sopostavlenie chislennykh i sputnikovykh dannykh o polyakh volneniya v Indijskom okeane // Meteorol. i gidrol. 2016. № 2. S. 90–96.

5. Lavrova O.Yu., Kostyanoj A.G., Lebedev i dr. Kompleksnyj sputnikovyj monitoring morej Rossii. M.: IKI RAN, 2011. 250 s.

6. Polnikov V.G. Model' vetrovogo volneniya s optimizirovannoj funktsiej istochnika // Izv. RAN. Fizika atmosfery i okeana. 2005. T. 41. № 5. S. 655–672.

7. Polnikov V.G., Dymov V.I., Pasechnik T.A. i dr. Fakticheskie preimuschestva modeli vetrovogo volneniya s optimizirovannoj funktsiej istochnika // Dokl. RAN. 2007. T. 417. № 9. S. 1375–1379.

8. Alpers W. Theory of radar imaging of internal waves // Nature. 1985. V. 314 (6008). P. 245–247.

9. Ardhuin F., Rogers E., Babanin A.V. et al. Semiempirical dissipation source functions for ocean waves. PtI: defi nition, calibration, and validation // J. Phys. Oceanogr. 2010. V. 40. P. 1917–1941.

10. Brown G., Stanley H., Roy N. The wind-speed measurement capability of spaceborne radar altimeters // IEEE J. Oceanic Eng. 1981. V. 6. № 1. P. 59–63.

11. Caires S., Sterl A. Validation of ocean wind and wave data using triple collocation // J. Geophys. Res. 2003. V. 108. P. 3098. doi:10.1029/2002JC001491.

12. Chen-Zhang D.D., Ruf C S, Ardhuin F., Park J. GNSS-R nonlocal sea state dependencies: Model and empirical verification // J. Geophys. Res. Oc. 2016. V. 121. № 11. doi:10.1002/2016JC012308.

13. Dobson E., Monaldo F., Goldhirsh J., Wilkerson J. Validation of Geosat altimeter-derived wind speeds and signifi cant wave heights using buoy data // J. Geophys. Res. 1987. V. 92. P. 10719–10731.

14. Fu L.L., Cazenave A. Satellite altimetry and earth sciences: a handbook of techniques and applications. Acad. Press., 2000. V. 69.

15. Glazman R.E., Greysukh A. Satellite altimeter measurements of surface wind // J. Geophys. Res. 1993. V. 98. R. 2475–2483.

16. Gunter H., Hasselmann S., Janssen P.A.E.M. Techn. Rep. № 4. DKRZ WAM4 Model Documentation. Hamburg, 1992. 101 p.

17. Hwang P.A., Fan Y. Eff ective fetch and duration of tropical cyclone wind fi elds estimated from simultaneous wind and wave measurements: Surface wave and air–sea exchange computation // J. Phys. Oceanogr. 2017. № 2. P. 447–470, doi: 10.1175/JPO-D-16-0180.1.

18. Jensen R.E., Swail V.R., Bouchard R. H. et al. Field laboratory for ocean sea state investigation and experimentation: FLOSSIE. Intra-Measurement Evaluation of 6N Wave Buoy Syst. 2015. 14-th Int. Workshop on Wave Hindcasting & Forecasting, Key West, Florida. http://www.waveworkshop.org/14thWaves/index.htm

19. Janssen P.A.E.M., Abdalla S., Hersbach H. et al . Error Estimation of Buoy, Satellite, and Model Wave Height Data // J. Atm. Oc. Tech. 2007. V. 24. № 9. P. 1665–1677.

20. http://www.ecmwf.int/research/era/do/get/era-interim

21. Komen G. L., Cavaleri L., Donelan M. et al. Dynamics and modelling of ocean waves. Cambridge Univ. Press, 1994. 532 p.

22. Liu Q., Babanin A. V., Guan C et al. Calibration and validation of HY-2 Altimeter Wave Heigh // J. Atm. Oc. Tech. V. 33. № 3. P. 919–936.

23. Martin S. An introduction to ocean remote sensing. Cambridge Univ. Press, 2014. 220 p.

24. Mentaschi L., Besio G. Problems in RMSE-based wave model validations // Oc. Modelling. 2013. V. 72. № 1. P. 53–58.

25. Polnikov V. G. Spectral description of the dissipation mechanism for wind waves. Eddy viscosity model // Mar. Sci. 2012. V. 2. № 3. P. 13–26.

26. Polnikov V.G., Innocentini V. Comparative study performance of wind wave model: WAVEWATCH-modifi ed by the new source function // Eng. Appl. Comput. Fluid Mech. 2008. V. 2. № 4. P. 466–481.

27. Queff eulou P. Long-term quality status of wave height and wind speed measurements from satellite altimeters // Mar. Geodesy. 2004. V. 27(№ 3–4). P. 495–510.

28. Queff eulou P. Merged altimeter wave height data base. An update // Proc. ‘ESA Living Planet Symp. – 2013’, Edinburgh, UK.

29. Samiksha S.V., Polnikov V.G., Vethamony P. et al. Verifi cation of model wave heights with long-term moored: Application to wave fi eld over the Indian Ocean // Oc. Eng. 2015. V. 104. R. 469–479.

30. Shanas P.R., Kumar V.S., Hithin N.K. Comparison of gridded multi-mission and along-track mono-mission satellite altimetry wave heights with in situ near-shore buoy data // Oc. Eng. 2014. V. 83. P. 24–35.

31. Vethamony P., Sudheesh K. Rupal S. P. et al. Wave modelling for the north Indian Ocean using MSMR analysed winds // Int. J. Rem. Sens. 2006. V. 27. № 18. P. 3767–3780.

32. Young I.R., Babanin A., Zieger S. The decay rate of ocean swell observed by altimeter // J. Phys. Oceanogr. 2013. V. 43. P. 2322–2333.

33. Young I.R., Sanina E., Babanin A.V. Calibration and cross-validation of a global wind and wave database of altimeter, radiometer and scatterometer measurements // J. Atm. Oc. Techn. 2017. V. 34. P. 1285–1306.

34. Young Y., Vinoth J., Zieger S., Babanin A.V. Investigation of trends in extreme value wave height and wind speed // J. Geophys. Res. 2012. V. 117. № C11. C00J06. doi:10.1029/2011JC007753.

35. Young I.R., Zieger S., Babanin A. Global trends in wind speed and wave height // Science. 2011. V. 332. № 6028. P. 451–455, doi:10.1126/science.1197219.

36. Zieger S., Vinoth J., Young I.R. Joint Calibration of Multiplatform Altimeter Measurements of Wind Speed and Wave Height over the Past 20 Years // 2009. V. 26. № 12. P. 2549–2564.

Система Orphus

Loading...
Up