Dynamics of High- Altitude Jet Fluxes Inferred from the Satellite Measurement Data and Their Connection with the Climatic Parameters and Large-Scale Atmospheric Phenomena

 
PIIS020596140003365-2-1
DOI10.31857/S020596140003365-2
Publication type Article
Status Published
Authors
Affiliation: Federal State Budgetary Institution "Typhoon Scientific Production Association"
Address: Russian Federation
Affiliation: Federal State Budgetary Institution "Typhoon Scientific Production Association"
Address: Russian Federation
Affiliation: Federal State Budgetary Institution "Typhoon Scientific Production Association"
Address: Russian Federation
Journal nameIssledovanie Zemli iz kosmosa
EditionIssue 6
Pages24-38
Abstract

Presented are the investigation results of spatial-temporal variations of basic characteristics if jet fl uxes in the upper troposphere of the Northern and Southern hemispheres in the surveillance zones of the European geostationary meteorological satellites during the period of 2007–2017. The main attention was paid to their connection with the troposphere temperature, the ice cross section area and large-scale atmospheric phenomena. General laws and signifi cant diff erences of interannual variability of jet fl uxes in the Northern and Southern hemispheres were revealed. Based on the correlation and cross-wavelet analyses it was shown that the interannual variations of the upper troposphere (T) at the levels of 200 to 500 hPa and the area of a jet fl ux (S) take place in both hemispheres in the counter phase, and T and the width of its center (φ) in the phase. Variations of the sea ice cross-section area (Sice) and S annual fl uctuations occur in both hemispheres predominantly in the phase, and the fl uctuations of (Sice) and (φ) in both hemispheres are close to the counter phase. The peculiarity of annual variations of the (Sice) and S series in the Northern hemisphere, being in the variations of S that go ahead of (Sice) by 1.5–2.5 months, was found. A complex changing with tine character of the connection of jet fl uxes characteristics with North-Atlantic oscillation (NAO) and quasi-biannual cycle of zonally averaged over the equator wind (QBO) was revealed.

Keywordsjet fl uxes, spatiotemporal variability, the upper troposphere, geostationary satellites, spectral, composite and wavelet analyses, climate changes
AcknowledgmentThis work was supported by the RFBR grant 18–05–00831a.
Received27.12.2018
Publication date27.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1269

Readers community rating: votes 0

1. Atmosfera. Sprav. L.: Gidrometeoizdat, 1991. 509 s.

2. Visheratin K. N. Mezhgodovye variatsii i trendy srednezonal'nykh ryadov obschego soderzhaniya ozona, temperatury i zonal'nogo vetra // Izv. RAN. Fizika atmosfery i okeana. 2007. T. 43. № 4. C. 67–85.

3. Visheratin K. N. Fazovye sootnosheniya mezhdu kvazidesyatiletnimi kolebaniyami obschego soderzhaniya ozona i 11-letnim tsiklom solnechnoj aktivnosti // Geomagnetizm i aehronomiya. 2012. T. 52. № 1. S. 99–108.

4. Visheratin K. N. Prostranstvenno-vremennye variatsii fazy kvazidesyatiletnikh kolebanij obschego soderzhaniya ozona // Issled. Zemli iz kosmosa. 2017. № 2. S. 88–95.

5. Visheratin K. N., Kuznetsov V. I. Prostranstvenno-vremennye variatsii fazy osnovnykh kolebanij obschego soderzhaniya ozona po dannym sputnikovykh izmerenij TOMS-SBUV // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2012. T. 9. № 2. S. 192–199.

6. Vorob'ev V. I. Strujnye techeniya v vysokikh i umerennykh shirotakh. L.: Gidrometeoizdat, 1960. 234 s.

7. Ivangorodskij R. V., Nerushev A. F. Kharakteristiki strujnykh techenij verkhnej troposfery po dannym izmerenij evropejskikh geostatsionarnykh meteorologicheskikh sputnikov// Sovr. probl. dist. zondir. Zemli iz kosmosa. 2014. T. 11. № 1. S. 45–53.

8. Kalashnik M. V. Generatsiya vnutrennikh gravitatsionnykh voln vikhrevymi vozmuscheniyami v sdvigovom potoke // Izv. RAN. Fizika atmosfery i okeana. 2014. T. 50. № 6. S. 723–732.

9. Kalashnik M. V., Nerushev A. F., Ivangorodskij R. V. Kharakternye masshtaby i gorizontal'naya asimmetriya strujnykh techenij v atmosfere Zemli // Izv. RAN. Fizika atmosfery i okeana. 2017. T. 53. № 2. S. 179–187.

10. Kitaev L. M., Titkova T. B. Svyaz' izmenchivosti ploschadi morskogo l'da Arktiki i meteorologicheskikh kharakteristik zimnego perioda na severe Evrazii // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2013. T. 10. № 3. S. 179–192.

11. Masters Dzh. Strujnoe techenie stanovitsya fatal'nym // V mire nauki. 2015. № 2. S. 61–68.

12. Nerushev A. F., Visheratin K. N., Ivangorodskij R. V. Prostranstvenno-vremennaya izmenchivost' vysotnykh strujnykh techenij po dannym sputnikovykh izmerenij // Issled. Zemli iz kosmosa. 2017. № 6. S. 31–45.

13. Nerushev A. F., Ivangorodskij R. V. Kharakteristiki vysotnykh strujnykh techenij Severnogo i Yuzhnogo polusharij po dannym sputnikovykh izmerenij // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2017. T. 14. № 7. S. 299–307.

14. Nerushev A. F., Kramchaninova E. K. Metod opredeleniya kharakteristik atmosfernykh dvizhenij po dannym izmerenij meteorologicheskikh geostatsionarnykh sputnikov // Issled. Zemli iz kosmosa. 2011. № 1. S. 3–13.

15. Nerushev A. F. Strujnye techeniya v atmosfere Zemli // Zemlya i vselennaya. 2014. № 6. S. 16–30.

16. Nesterov E. S. Severoatlanticheskoe kolebanie: atmosfera i okean. M.: Triada, ltd, 2013. 44 s.

17. Pal'men Eh., N'yuton Ch. Tsirkulyatsionnye sistemy atmosfery: Per. s angl. L.: Gidrometeoizdat, 1973. 615 s.

18. Pogosyan Kh. P. Strujnye techeniya v atmosfere. L.: Gidrometeoizdat, 1960. 200 s.

19. Abish B., Joseph P. V., Johannessen Ola.M. Climate change in the subtropical Jet stream during 1950–2009 // Adv. Atm. Sci. 2015. V. 32. Iss. 1. R. 140–148.

20. Archer C. L., Caldeira K. Historical trends in the jet streams // Geophys. Res. Lett. 2008. V. 35. Iss. 8. L08803.

21. Baker H. S., Woollings T., Mbengue C. Eddy-driven jet sensitivity to diabatic heating in an idealized GCM // J. Clim. 2017. V. 30. № 16. P. 6413–6431.

22. Baldwin M. P., Gray L. J., Dunkerton T. J. et al. The quasi-biennial oscillation // Rev. Geoph. 2001. V. 39. P. 179–229.

23. Burrows D. A., Chen G., Sun L. Barotropic and baroclinic eddy feedbacks in the midlatitude jet variability and responses to climate change–like thermal forcings // J. Atm. Sci. 2017. V. 74. P. 111–132, doi:10.1175/JAS-D-16–0047.1

24. Fu Q., Lin P. Poleward Shift of Subtropical Jets Inferred from Satellite-Observed lower-stratospheric temperatures // J. Clim. 2011. V. 24. № 21. R. 5597–5603.

25. Gallego D., Ribera P., Garcia-Herrera R., Hernandez E., Gimeno L. A new look for the Southern Hemisphere jet stream // Clim. Dynam. 2005. V. 24. Iss. 6. P. 607–621.

26. Grinsted A., Moore J. C., Jevrejeva S. Application of the crosswavelet transform and wavelet coherence to geophysicaltime series // Nonlin. Proc. Geophys. 2004. № 11. P. 561–566. doi: 10.5194/npg-11–561–2004

27. Hall R., Jones J., Hanna E., Scaife A., Erdelyi R. Drivers and potential predictability of summer time North Atlantic polar front jet variability // Clim. Dyn. 2017. V. 48. P. 3869–3887. doi:10.1007/s00382–016–3307–0

28. Hudson R. D. Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010 // Atm. Chem. Phys. 2012. V. 12. P. 7797–7808. https://doi.org/10.5194/acp-12–7797–2012, 2012

29. Kalnay E., Coauthors. The NCEP/NCAR Reanalysis 40-year Project // Bull. Amer. Meteor. Soc. 1996. V.77. P. 437–471.

30. McGraw M.C., Barnes E. A. Seasonal sensitivity of the eddy-driven jet to tropospheric heating in an idealized AGCM // J. Clim. 2016. V. 29. P. 5223–5240, doi:10.1175/JCLI-D-15–0723.1

31. Newman P. A., Coy L., Pawson S., Lait L. R. The anomalous change in the QBO in 2015–2016 // Geophys. Res. Lett. 2016. № 43. R. 8791–8797, https://doi.org/10.1002/2016GL070373

32. Pena-Ortiz C., Gallego D., Ribera P., Ordonez P., Alvarez-Castro M. Observed trends in the global jet stream characteristics during the second half of the 20th century // J. Geophys. Res.: Atm. V. 118. Iss. 7. 2013. P. 2702–2713.

33. Reichler T. Changes in the Atmospheric Circulation as Indicator of Climate Change / Ed. M. Trevor. Letcher, itor: Clim. Change: Observed impacts on Planet Earth, The Netherlands, 2009. P. 145–164.

34. Sun L., Chen G., Lu J. Sensitivities and mechanisms of the zonal mean atmospheric circulation response to tropical warming // J. Atm. Sci. 2013. V. 70. P. 2487–2504, doi: 10.1175/JAS-D-12–0298.1

35. Torrence C., Compo G. P. A practical guide to wavelet analysis // Bull. Am. Meteorol. Soc. 1998. V. 79. P. 61–78.

Система Orphus

Loading...
Up