Comparison of Outgoing ir Radiation Spectra Measured in Diff erent Yea

 
PIIS020596140003243-8-1
DOI10.31857/S020596140003243-8
Publication type Article
Status Published
Authors
Affiliation: St. Petersburg State University
Address: Russian Federation
Affiliation: MV Research Center Keldysh
Address: Russian Federation
Affiliation: Previously worked in the GDR Meteorological Service
Address: Germany
Affiliation: Previously worked at the Space Research Institute of the Academy of Sciences of the GDR
Address: Germany
Affiliation: Leibniz Scientific Society
Address: Germany
Journal nameIssledovanie Zemli iz kosmosa
EditionIssue 5
Pages65-72
Abstract

Comparisons of outgoing IR radiation spectra measured by Fourier SI-1 spectrometer in 1977 and 1979 from the Meteor-28 and -29 satellites to numerical calculations on the basis of the modern LBLRTM code and data of atmospheric radio sounding are carried out. In most cases, mean diff erences between measurements and calculations do not exceed 2 mW/(m2srcm–1) in the 660–1600 cm–1 spectral range. Standard deviations and mean square diff erences are, on average, 2–4 mW/(m2srсm–1). These values are greater by about 1 mW/(m2srсm–1) than relevant diff erences between calculations and measurements for modern IKFS-2 spectrometer. Comparisons of experimental spectra of 1977, 1979 and 2015–2016 have shown that, on average, the intensity of outgoing IR radiation measured by the IKFS-2 device, is by 0.5–3.0 mW/(m2srсm–1) less than SI-1 radiation measurements onboard Meteor-28 and -29 satellites obtained 40 years ago. This eff ect may be associated with the CO2 increase in the atmosphere and the resulting raising of radiating atmosphere layers to tropospheric layers with a smaller temperature.

Keywordsoutgoing thermal radiation, Fourier-spectrometers SI-1 and IKFS-2, climate change
AcknowledgmentThis study was supported by the RFBR grant 17–05–00768.
Received26.12.2018
Publication date26.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1397

Readers community rating: votes 0

1. Asmus V. V., Timofeev Yu. M., Polyakov A. V., Uspenskij A. B., Golovin Yu. M., Zavelevich F. S., Kozlov D. A., Rublev A. N., Kukharskij A. V., Pyatkin V. P., Rusin E. V. Temperaturnoe zondirovanie atmosfery po dannym sputnikovogo IK fur'e-spektrometra // Izv. RAN. Fizika atmosfery i okeana. 2016. T. 53. № 4. S. 487–492.

2. Garkusha A. S., Polyakov A. V., Timofeev Yu. M., Virolajnen Ya. A. Opredelenie obschego soderzhaniya ozona po dannym izmerenij sputnikovogo IK fur'e-spektrometra // Izv. RAN. Fizika atmosfery i okeana. 2017. T. 53. № 4. S. 493–501.

3. Golovin Yu. M., Zavelevich F. S., Nikulin A. G., Kozlov D. A., Monakhov D. O., Kozlov I. A., Arkhipov S. A., Tselikov V. A., Romanovskij A. S. Bortovye infrakrasnye fur'e-spektrometry dlya temperaturno-vlazhnostnogo zondirovaniya atmosfery Zemli // Issled. Zemli iz kosmosa. 2013. № 6. S. 25–37.

4. Kozlov D. A., Timofeev Yu. M., Zavelevich F. S., Golovin Yu. M., Polyakov A. V., Deler V., Ortel' D., Shpenkukh D. Metodika perescheta spektrov ukhodyaschego teplovogo IK-izlucheniya k proizvol'nomu spektral'nomu razresheniyu // Sovr. probl. dist. zondir. Zemli iz kosmosa (v pechati). Kondrat'ev K. Ya., Timofeev Yu. M. Meteorologicheskoe zondirovanie atmosfery iz kosmosa. L.: Gidrometeoizdat, 1978. 280 s.

5. Polyakov A. V., Timofeev Yu. M., Virolajnen Ya. A., Uspenskij A. B., Zavelevich F. S., Golovin Yu. M., Kozlov D. A., Rublev A. N., Kukharskij A. V. Sputnikovyj atmosfernyj zondirovschik IKFS-2. 1. Analiz izmerenij spektrov ukhodyaschego izlucheniya // Issled. Zemli iz kosmosa. 2016. № 5. S. 71–78. mosfernoj optiki. SPb.: Nauka, 2003. 474 s.

6. Alvarado M. J., Payne V. H., Mlawer E. J. Uymin G., Shephard M. W., Cady-Pereira K.E., Delamere J. S., Moncet J.- L. Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies // Atm. Chem. Phys. 2013. V. 13. P. 6687–6711.

7. Anderson J. G., Dykema J. A., Goody R. M., Hu H., Kirk- Davidoff D. B. Absolute, spectrally-resolved, thermal radiance: a benchmark for climate monitoring from space // J. Quant. Spectrosc. Radiat. 2004. V. 18. R. 810–822.

8. Aumann H. H., Miller C. Atmospheric infrared sounder (AIRS) on the Earth Observing System: Advanced and next-generation satellites // Proc. SPIE. 1995. V. 2583. P. 332–338.

9. Clough S. A., Iacono M. J. Line-by-line calculations of atmospheric fl uxes and cooling rates II: Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons // J. Geophys. Res. 1995. V. 100. P. 16,519–16,535.

10. Glumb R. J. Williams F. L., Funk N., Chateauneuf F., Roney A., Allard R. Cross-track Infrared Sounder (CrIS) development status // Proc. SPIE. 2003. V. 5152. P. 1–8.

11. Goody R., Haskins R. Calibration of radiances from space // J. Clim. 1998. V. 11. P. 754–758.

12. Hanel R., Conrath B. Preliminary results from the interferometer experiment on Nimbus III // Science. 1969. V. 165. № 3899. P. 1258–1260.

13. Harries J. E., Brindley H. E., Sagoo P. J., Bantges R. J. // Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997 // Nature. 2001. V. 410. P. 355–357.

14. Kempe V. Satellite-Fourier-spectrometer for Meteor-25: design problems and mission // Acta Astron. 1980. V. 7. P. 893–902.

15. Kempe V., Oertel D., Schuster R., Becker-Ross H., and Jahn H. Absolute IR-spectra from the measurement of Fourier-spectrometers aboard Meteor 25 and 28 // Acta Astron. 1980. V. 7. № 12. P. 1403–1416.

16. LBLRTM 12.1: LBLRTM Description. 2011. http://rtweb.aer.com/lblrtm_description.html.

17. Ogawa T., Shimoda H., Hayashi M., Imasu R., Ono A., Nishinomiya S., Kobayashi H. IMG: Interferometric measurement of greenhouse gases from space // Adv. Space. Res. 1994. V. 14. № 1. P. 25–28.

18. Phulpin T., Blumstein D., Prel F., Tournier B., Prunet P., Schluessel P. Applications of IASI on MetOp-A: fi rst results and illustration of potential use for meteorology, climate monitoring, and atmospheric chemistry // Proc. SPIE. 2007. V. 6684, article id. 66840F. 12 p.

19. Theodore B., Coppens D., Dohler W., Damiano A., Oertel D., Klaes D., Schmetz J., Spankuch D. Exploitation of SI-1 data from Meteor-28 and 29 spacecraft for climate purposes // Proc. the 2015 EUMETSAT Meteorological Satellite Conf., 21–25 September 2015, Toulouse, France.

20. Wark D. Q., Hilleary D. T. Atmospheric temperature: successful test of remote probing // Science. 1969. V. 165. № 3899. P. 1256–1258.

Система Orphus

Loading...
Up