GIS-Oriented Database on Seismic Hazard Assessment for Caucasian and Crimean Regions

 
PIIS020596140003241-6-1
DOI10.31857/S020596140003241-6
Publication type Article
Status Published
Authors
Affiliation: FSBIS Geophysical Center of the Russian Academy of Sciences (GC RAS)
Address: Russian Federation
Affiliation: FSBIS Geophysical Center of the Russian Academy of Sciences (GC RAS)
Address: Russian Federation
Affiliation: FGBUN Institute of Physics of the Earth. O.Yu. Schmidt of the Russian Academy of Sciences (IPE RAS)
Address: Russian Federation
Affiliation: FSBIS Geophysical Center of the Russian Academy of Sciences (GC RAS)
Address: Russian Federation
Affiliation: FSBIS Geophysical Center of the Russian Academy of Sciences (GC RAS)
Address: Russian Federation
Journal nameIssledovanie Zemli iz kosmosa
EditionIssue 5
Pages52-64
Abstract

In our country, zones of increased seismic hazard occupy about 20% of the territory and 5% of those are extremely dangerous. They include the territories of the Caucasus and the Crimea populated by about 15 million people. To assess the seismic hazard and minimize the consequences of possible earthquakes, in these regions, we created and continue to develop a specialized database and a multi-functional user interface to access it. For the fi rst time, the most comprehensive results of recognition of increased seismicity zones by independent methods, as well as the initial data underlying the recognition are collected in a single environment. The system makes it possible to carry out complex, multi-criteria assessment of seismic hazard in the given regions. Modern geographical information systems (GIS) signifi cantly simplify the process of preparation, organization and analysis of such data. Being based on integrated approach to seismic hazard assessment GIS allows grouping, combining and visualizing relevant information on an interactive map. Tools for analysis and interactive queries integrated into GIS enable the researcher to independently assess the risk rate in the regions of interest by various criteria and methods. The seismic hazard assessment database and its user interface are implemented using the ESRI ArcGIS software. It fully meets the scalability requirement in terms of both functionality and data volume.

KeywordsGIS, seismic hazard, pattern recognition, geoprocessing tools, geospatial database, system analysis
AcknowledgmentThe work was performed as part of the state assignment of the GC RAS, approved by the Ministry of Science and Higher Education of the Russian Federation In this work, we used the data of the Analytical Center of Geomagnetic Data of the Geophysical Center of the Russian Academy of Sciences.
Received26.12.2018
Publication date26.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1590

Readers community rating: votes 0

1. Alekseevskaya M. A., Gabriehlov A. M., Gvishiani A. D., Gel'fand I. M., Rantsman E. Ya. Morfostrukturnoe rajonirovanie gornykh stran po formalizovannym priznakam. Raspoznavanie spektral'nyj analiz v sejsmologii / Pod red. V. I. Kejlis-Boroka. M.: Nauka, 1977. S. 33–49 (Vychisl. Sejsmologiya. Vyp. 10).

2. Berezko A. E., Solov'ev A. A., Gvishiani A. D., Zhalkovskij E. A., Krasnoperov R. I., Smagin S. A., Bolotskij Eh. S. Intellektual'naya geograficheskaya informatsionnaya sistema «Dannye nauk o Zemle po territorii Rossii» // Inzh. ehkol. 2008. № 5. S. 32–40.

3. Bondur V. G. Sovremennye podkhody k obrabotke bol'shikh potokov giperspektral'noj i mnogospektral'noj aehrokosmicheskoj informatsii // Issled. Zemli iz kosmosa. 2014. № 1. S. 4–16. DOI: 10.7868/S0205961414010035.

4. Bondur V. G., Zverev A. T. Metod prognozirovaniya zemletryaseniya na osnove lineamentnogo analiza kosmicheskikh izobrazhenij // Dokl. RAN. 2005. T. 402. № 1. S. 98–105.

5. Bondur V. G., Zverev A. T. Mekhanizmy formirovaniya lineamentov, registriruemykh na kosmicheskikh izobrazheniyakh pri monitoringe sejsmoopasnykh territorij // Issled. Zemli iz kosmosa. 2007. № 1. S. 47–56.

6. Bondur V. G., Zverev A. T., Gaponova E. V. Lineamentnyj analiz kosmicheskikh izobrazhenij sejsmoopasnykh territorij Rossii // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2012. T. 9. № 4. S. 213–222.

7. Gvishiani A. D., Solov'ev A. A. O priurochennosti ehpitsentrov sil'nykh zemletryasenij k peresecheniyam morfostrukturnykh lineamentov na territorii Yuzhnoj Ameriki. Metody i algoritmy interpretatsii sejsmologicheskikh dannykh / Pod red. V. I. Kejlis-Boroka, A. L. Levshina. M.: Nauka, 1981. S. 46–50 (Vychisl. sejsmologiya; Vyp. 13).

8. Gvishiani A. D., Agayan S. M., Bogoutdinov Sh. R., Solov'ev A. A. Diskretnyj matematicheskij analiz i geologo-geofizicheskie prilozheniya // Vestn. KRAUNTs. Nauki o Zemle. 2010. № 2. Vyp. № 16. S. 109–125.

9. Gvishiani A. D., Dzeboev B. A., Agayan S. M. O novom podkhode k raspoznavaniyu mest vozmozhnogo vozniknoveniya sil'nykh zemletryasenij na Kavkaze // Fizika Zemli. 2013. № 6. S. 3–19. DOI: 10.7868/S0002333713060045

10. Gvishiani A. D., Dzeboev B. A., Agayan S. M. Intellektual'naya sistema raspoznavaniya FCAZm v opredelenii mest vozmozhnogo vozniknoveniya sil'nykh zemletryasenij gornogo poyasa And i Kavkaza // Fizika Zemli. 2016. № 4. S. 3–23.

11. Gvishiani A. D., Agayan S. M., Dzeboev B. A., Belov I. O. Raspoznavanie mest vozmozhnogo vozniknoveniya ehpitsentrov sil'nykh zemletryasenij s odnim klassom obucheniya // Dokl. RAN. 2017a. T. 474. № 1. S. 86–92. DOI: 10.7868/S0869565217130175

12. Gvishiani A. D., Dzeboev B. A., Sergeeva N. A., Rybkina A. I. Formalizovannaya klasterizatsiya i zony vozmozhnogo vozniknoveniya ehpitsentrov znachitel'nykh zemletryasenij na Krymskom poluostrove i Severo-Zapade Kavkaza // Fizika Zemli. 2017b. № 3. S. 33–42. doi: 10.7868/S0002333717030036

13. Gel'fand I. M., Guberman Sh. A., Izvekova M. L., Kejlis-Borok V.I., Rantsman E. Ya. O kriteriyakh vysokoj sejsmichnosti // Dokl. AN SSSR. 1972. T. 202. № 6. S. 1317–1320.

14. Gorshkov A. I. Raspoznavanie mest sil'nykh zemletryasenij v Al'pijsko-Gimalajskom poyase. M.: KRASAND, 2010. 472 s. (Vychisl. sejsmologiya; Vyp. 40). Gorshkov A. I., Solov'ev A. A., Zharkikh Yu. I. Morfostrukturnoe rajonirovanie gornoj chasti Kryma i mesta vozmozhnogo vozniknoveniya sil'nykh zemletryasenij // Vulkanologiya i sejsmologiya. 2017. № 6. S. 21–27, doi:10.7868/S0203030617060025

15. Kosobokov V. G. Prognoz zemletryasenij i geodinamicheskie protsessy. Ch. I. Prognoz zemletryasenij: osnovy, realizatsiya, perspektivy. M.: GEOS, 2005. 179 s. (Vychisl. sejsmologiya; Vyp. 36).

16. Kuznetsov N. A., Gitis V. G. Setevye analiticheskie GIS v fundamental'nykh issledovaniyakh // Inf. protsessy. T. 4. № 3. 2004. S. 221–240.

17. Krasnoperov R. I., Solov'ev A. A. Analiticheskaya geoinformatsionnaya sistema dlya kompleksnykh geologo-geofizicheskikh issledovanij na territorii Rossii // Gornyj zhurn. 2015. № 10. S. 89–93. doi: 10.17580/gzh.2015.10.16

18. Krasnoperov R. I., Solov'ev A. A., Nikolov B. P., Zharkikh Yu. I., Grudnev A. A. Interaktivnoe veb-prilozhenie dlya kompleksnogo izucheniya prostranstvennoj informatsii po naukam o Zemle s ispol'zovaniem bazy geodannykh GTs RAN // Issled. po geoinf. 2016. T. 4. № 1. doi:10.2205/2016BS039

19. Nekrasova A. K., Kosobokov V. G. Obschij zakon podobiya dlya zemletryasenij: Krym i Severnyj Kavkaz // Dokl. RAN. 2016. T. 470. № 4. S. 468–470.

20. Rantsman E. Ya. Mesta zemletryasenij i morfostruktura gornykh stran. M.: Nauka, 1979. 170 s.

21. Solov'ev A. A. Modelirovanie dinamiki sistem blokov i razlomov i sejsmichnosti // Tr. Inst. mat. i mekh. UrO RAN. T. 17. № 2. Ekaterinburg: IMM UrO RAN, 2011. S. 174–190.

22. Solov'ev A. A., Novikova O. V., Gorshkov A. I., Piotrovskaya E. P. Raspoznavanie raspolozheniya potentsial'nykh ochagov sil'nykh zemletryasenij v Kavkazskom regione s ispol'zovaniem GIS-tekhnologij // Dokl. RAN. 2013. T. 450. № 5. S. 599–601. DOI:10.7868/S0869565213170222

23. Solov'ev A. A., Gvishiani A. D., Gorshkov A. I., Dobrovol'skij M. N., Novikova O. V. Raspoznavanie mest vozmozhnogo vozniknoveniya zemletryasenij: Metodologiya i analiz rezul'tatov // Fizika Zemli. 2014. № 2. S. 3–20. DOI:10.7868/S0002333714020112

24. Solov'ev Al.A., Gorshkov A. I., Solov'ev An. A. Primenenie dannykh po litosfernym magnitnym anomaliyam v zadache raspoznavaniya mest vozmozhnogo vozniknoveniya zemletryasenij // Fizika Zemli. 2016. № 6. S. 21–27.

25. Solov'ev A. A., Gorshkov A. I. Modelirovanie dinamiki blokovoj struktury i sejsmichnosti Kavkaza // Fizika Zemli. 2017. № 3. S. 3–13.

26. Solov'ev A. A., Krasnoperov R. I., Nikolov B. P., Zharkikh Yu. I., Agayan S. M. Veb-orientirovannyj programmnyj kompleks dlya analiza prostranstvennykh geofizicheskikh dannykh metodami geoinformatiki // Issled. Zemli iz kosmosa. 2018. № 2. S. 65–76. doi: 10.7868/S0205961418020070

27. Ulomov V. I. Aktualizatsiya normativnogo sejsmicheskogo rajonirovaniya v sostave Edinoj informatsionnoj sistemy «Sejsmobezopasnost' Rossii» // Vopr. inzh. sejsmol. 2012. T. 39. № 1. S. 5–38.

28. Ulomov V. I., Bogdanov M. I. Novyj komplekt kart obschego sejsmicheskogo rajonirovaniya territorii Rossijskoj Federatsii (OSR–2012) // Inzh. izyskaniya. 2013. № 8. S. 8–17.

29. Agayan S., Bogoutdinov S., Soloviev A., Sidorov R. The study of time series using the DMA methods and geophysical applications // Data Sci. J. 2016. № 15:16. R. 1–21. DOI: https://doi.org/10.5334/dsj-2016–016

30. Alexeevskaya M., Gabrielov A., Gel’fand I., Gvishiani A., Rantsman E. Formal morphostructural zoning of mountain territories // J. Geophys. Spr. Intern. 1977. V. 43. P. 227–233.

31. ArcGIS World Imagery. URL: http://goto.arcgisonline.com/maps/World_Imagery (data obrascheniya: 12.02.2018). Beriozko A., Lebedev A., Soloviev A., Krasnoperov R., Rybkina A. Geoinformation system with algorithmic shell as a new tool for Earth sciences // Russ. J. Earth. Sci. 2011. V. 12. ES1001. DOI: 10.2205/2011ES000501

32. ESRI shapefi le technical description. Redlands, CA, USA: ESRI, 1998. 34 p.

33. Forste C., Bruinsma S. L., Shako R. et al. A new release of EIGEN-6: The latest combined global gravity fi eld model including LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse // Geophys. Res. Abstr. 2012. V. 14. № EGU2012–2821. Fu P. Getting to Know Web GIS. Redlands, CA, USA: ESRI Press, 2016. 422 p.

34. Gvishiani A. D., Agayan S. M., Bogoutdinov Sh.R., Ledenev A. V., Zlotniki Z., Bonnin Z. Mathematical methods of geoinformatics. II. Fuzzy-logic algorithms in the problems of abnormality separation in time series // Cybern. and Syst. Anal. 2003. V. 39. Is 4. P. 555–563.

35. Gvishiani A. D., Agayan S. M., Bogoutdinov Sh.R., Tikhotsky S. A., Hinderer J., Bonnin J., Diament M. Algorithm FLARS and recognition of time series anomalies // Syst. Res. & Inf. Technol. 2004. № . 3. P. 7–16.

36. Gvishiani A., Dobrovolsky M., Agayan S., Dzeboev B. Fuzzybased clustering of epicenters and strong earthquake-prone areas // Environm. Eng. and Manag. J. 2013. V.12. № 1. P. 1–10.

37. Ismail-Zadeh A., Le Mouel J.- L., Soloviev A., Tapponnier P., Vorobieva I. Numerical modeling of crustal block-andfault dynamics, earthquakes and slip rates in the Tibet-Himalayan region // EPSL. 2007. V. 258. № 3–4. R. 465–485. DOI:10.1016/j.epsl.2007.04.006

38. Lesur V., Hamoudi M., Choi Y., Dyment J., Thebault E. Building the second version of the World Digital Magnetic Anomaly Map (WDMAM) // Earth, Plan. and Space. 2016. V. 68.

39. № 27. P. 1–13. DOI: 10.1186/s40623–016–0404–6 Mitchell A. The ESRI Guide to GIS Analysis. 2005. V. 2. Redlands, CA, USA: ESRI Press, 252 p.

40. Nekrasova A., Kosobokov V., Peresan A., Aoudia, Panza G. F. A multiscale application of the Unifi ed Scaling Law for earthquakes in the Central Mediterranean area and Alpine region // Pure Appl. Geophys. 2011. V.168. № 1–2. R. 297–327. DOI:10.1007/s00024–010–0163–4

41. Nikolov B. P., Zharkikh J. I., Soloviev A. A., Krasnoperov R. I., Agayan S. M. Integration of data mining methods for Earth science data analysis in GIS environment // Russ. J. Earth Sci. 2015. V. 15. № ES4004. DOI: 10.2205/2015ES000559

42. Parvez I. A., Nekrasova A., Kossobokov V. Estimation of seismic hazard and risks for the Himalayas and surrounding regions based on Unifi ed Scaling Law for Earthquakes // Nat. Haz. 2014. V.71. № 1. R. 549–562.

43. Shako R., Forste C., Abrikosov O., Bruinsma S., Marty J., Lemoine J., Flechtner F., Neumayer H., Dahle C. EIGEN-6C: A High-Resolution Global Gravity Combination Model Including GOCE Data // Observation of the System Earth from Space – CHAMP, GRACE, GOCE and future missions / Eds. F. Flechtner, N. Sneeuw, W.-D. Schuh. 2013. P. 155–161. DOI: 10.1007/978–3–642–32135–1_20

44. Soloviev A. A., Zharkikh J. I., Krasnoperov R. I., Nikolov B. P., Agayan S. M. GIS-oriented solutions for advanced clustering analysis of geoscience data using ArcGIS platform // Russ. J. Earth. Sci. 2016. V.16. № ES6004. doi: 10.2205/2016ES000587

45. Ulomov V. I., and the Working Group of the GSHAP Reg. 7. Seismic hazard of northern Eurasia // Ann. Geofi s. 1999. V. 42. P. 1023–1038. World Imagery Map Contributors. [Ehlektr. resurs].

46. URL: http://esriurl.com/WorldImageryContributors (data obrascheniya: 12.02.2018).

47. Zandbergen P. A. Python Scripting for ArcGIS. Redlands, CA, USA: ESRI Press, 2014. 358 p.

Система Orphus

Loading...
Up