On the Trends of Steric Level Fluctuations in the North Atlantic

 
PIIS020596140003236-0-1
DOI10.31857/S020596140003236-0
Publication type Article
Status Published
Authors
Affiliation: St. Petersburg State University
Address: Russian Federation
Affiliation: St. Petersburg State University
Address: Russian Federation
Journal nameIssledovanie Zemli iz kosmosa
EditionIssue 5
Pages31-40
Abstract

We consider trends of steric fl uctuations in the North Atlantic for the period 2003–2015, which are estimated by two independent methods. The fi rst method relies on the integrated use of altimetric and gravimetric measurements. AVISO data and GRACE missions are used. The second method uses an integral estimation of steric oscillations for changes in the liquid volume due to a change in its density. Calculations were carried out according to reanalysis data of SODA, EN4, and ARMOR. We prove that a direct comparison of altimetry with GRACE data and estimates using their combination gives overestimated values of steric fl uctuations and their trends. This is due to the fact, that GRACE observations show changes in the ocean mass and consequently sea level changes in some relative reference system rather than geocentric reference system, since the eff ect of elastic deformation of the ocean fl oor and the corresponding redistribution of water volumes are not taken into account. We demonstrate that in the North Atlantic the greatest shift in these estimates with errors in the determination of steric fl uctuations is characteristic for regions near Greenland due to the contribution of the negative trend component in the GRACE data. However, the trend component in the GRACE measurements is negligible with a relative distance from the shores of Greenland, and the trends of steric oscillations calculated using the method combining AVISO and GRACE data are similar to the trends of altimetric data variability. Trends of steric level oscillations calculated from reanalysis data show a signifi cant similarity in the spatial distribution as well as with trends of sea level variation calculated from altimetric data.

Keywordsocean level, steric fl uctuations, trend, Atlantic Ocean, satellite altimetry, GRACE, Greenland, SODA, EN4, ARMOR
AcknowledgmentThis work was carried out with the financial support of the Russian Science Foundation, grant No. 18-17-00027.
Received26.12.2018
Publication date26.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 993

Readers community rating: votes 0

1. Belonen ko T. V., Fedorov A. M., Bashmachnikov I. L., Fuks V. R. Trendy intensivnosti techenij v Labradorskom more i more Irmingera po sputnikovym al'timetricheskim dannym // Issled. Zemli iz kosmosa. 2018. № 2. S. 3–12.

2. Belonenko T. V., Fedorov A. M. Stericheskie kolebaniya urovnya i glubokaya konvektsiya v Labradorskom more i more Irmingera // Issled. Zemli iz kosmosa. 2018. № 3. S. 56–69.

3. Carton J. A., Chepurin G., Cao X., Giese B. S. A Simple Ocean Data Assimilation analysis of the global upper ocean 1950– 1995, Part 1: methodology // J. Phys. Oceanogr. 2000. V. 30. P. 294–309.

4. Carton J. A., Giese B. S. A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA) // Monthly Weather Revi. 2008. V. 136. Iss. 8. P. 2999. DOI: 10.1175/2007MWR1978.1

5. Chambers D. P., Bonin J. A. Evaluation of Release-05 GRACE time-variable gravity coeffi cients over the ocean // Oc. Sci. 2012. V. 8. P. 859–868. http://dx.doi.org/10.5194/ os-8–859–2012

6. Chambers D. P. Observing seasonal steric sea level variations with GRACE and satellite altimetry // J. Geophys. Res. 2006. № 111 (C3). R. C03010. http://dx.doi.org/10.1029/2005JC002914.

7. Chambers D. P., Cazenave A., Champollion N., Dieng H., Llovel W., Forsberg, R., von Schuckmann K., Wada Y. Evaluation of the global mean sea level budget between 1993 and 2014 // Surv. Geophys. 2016. № 38(1). R. 309–327. https://doi.org/10.1007/s10712–016–9381–3

8. Chen X., Zhang X., Church J. A., Watson C. S., King M. A., Monselesan D., …, Harig C. The increasing rate of global mean sea-level rise during 1993–2014 // Nat. Clim. Change. 2017. № 7(7). R. 492–495. https://doi.org/10.1038/nclimate3325

9. Dee D. P. et al. The ERA-interim reanalysis: configuration and performance of the data assimilation system // Quart. J. Royal Meteorol. Soc. John Wiley & Sons Ltd., 2011. № 137. P. 553–597.

10. Fenoglio-Marc L., Rietbroek R., Grayek S., Becker M.,J. & Stanev E. Water mass variation in the Mediterranean and Black Seas // J. Geodyn. 2012. № 59. R. 168–182. https://doi.org/10.1016/j.jog.2012.04.001

11. Frederikse T., Riva R. E.M., King M. A. Ocean bottom deformation due to present-day mass redistribution and its impact on sea level observations // Geophys. Res. Lett. 2017. № 44. https://doi.org/10.1002/2017GL075419

12. Fu L. L., Le Traon P.- Y. Satellite altimetry and ocean dynamics // Comp. Rend. Geosci. 2006. V. 338. Iss. 14–15. P. 1063–1076. http://dx.doi.org/10.1016/j.crte.2006.05.015

13. Garcia D., Ramillien G., Lombard A., Cazenave A. Steric Sea-level Variations Inferred from Combined Topex/Poseidon Altimetry and GRACE Gravimetry // Pure & Appl. Geophys. 2007. V. 164. Iss. 4. P. 721–731.

14. Good S. A., Martin M. J., Rayner N. A. EN4: quality controlled ocean temperature and salinity profi les and monthly objective analyses with uncertainty estimates // J. Geophys. Res.: Oceans. 2013. V. 118 R. 6704–6716. doi:10.1002/2013JC009067

15. Guinehut S., Dhomps A.- L., Larnicol G., Le Traon P.- Y. High resolution 3D temperature and salinity fi elds derived from in situ and satellite observations // Oc. Sci. 2012. № 8. R. 845–857. doi:10.5194/os-8–845–2012

16. Han G., Chen N., Kuo C. Y., Shum C. K., Ma Z. Interannual and Decadal Sea Surface Height Variability Over the Northwest Atlantic Slope // IEEE J. Select. Topics in Appl. Earth Observ. and Rem. Sens. DOI:10.1109/JSTARS.2016.2584778, 2016

17. Kleinherenbrink M., Riva R., Sun Y. Sub-basin-scale sea level budgets from satellite altimetry, Argo fl oats and satellite gravimetry: A case study in the North Atlantic Ocean // Oc. Sci. 2016. № 12(6). R. 1179–1203. https://doi.org/10.5194/os-12–1179–2016

18. Kopp R. E., Horton R. M., Little C. M., Mitrovica J. X., Oppenheimer M., Rasmussen D. J., …, Tebaldi C. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites // Earth’s Future. 2014. № 2(8). R. 383–406. https://doi.org/10.1002/2014EF000239

19. Kuo C.- Y., Shum C. K., Guo J.- Y., Yi Y., Braun A., Fukumori I., …, Shibuya K. Southern Ocean mass variation studies using GRACE and satellite altimetry // Earth, Planets and Space. 2008. № 60(5). R. 477–485. https://doi.org/10.1186/ BF03352814

20. Kuo C. Determination and characterization of 20th century global sea level rise,” Ohio State Univ., Columbus, OH, USA, Geodetic Sci. Rep. № 478. 2006.

21. Leuliette E. W., Willis J. K. Balancing the sea level budget // Oceanogr. 2011. № 24. R. 122–129. https://doi.org/10.5670/oceanog.2011.32

22. Lombard A., Garcia D., Ramillien G., Cazenave A., Biancale R., Lemoine J. M., Flechtner F., Schmidt R., Ishii M. Estimation of steric sea level variations from combined GRACE and Jason-1 data // Earth Planet Sci Lett. 2007. № 254. R. 194–202.

23. Nerem R. S., Chambers D. P., Choe C., Mitchum G. T. Estimating mean sea level change from the TOPEX and Jason altimeter missions // Marine Geodesy. 2010. № 33(S1). R. 435– 446. https://doi.org/10.1080/01490419.2010.491031

24. Ray R. D., Luthcke S. B., van Dam T. Monthly crustal loading corrections for satellite altimetry // J. Atm. and Oc. Technol. 2013. № 30(5). R. 999–1005. https://doi.org/10.1175/JTECH-D-12–00152.1

25. Rietbroek R., Brunnabend S.- E., Kusche J., Schroter J., Dahle C. Revisiting the contemporary sea-level budget on global and regional scales // Proc. Nat. Acad. Sci. 2016. № 113(6). R. 1504–1509. https://doi.org/10.1073/ pnas.1519132113

26. Tamisiea M.E. Ongoing glacial isostatic contributions to observations of sea level change // Geophys. J. Int. 2011. № 186(3). R. 1036–1044. https://doi. org/10.1111/j.1365–246X.2011.05116.x

27. Thomas M. Ocean induced variations of Earth’s rotation – Results from a simultaneous model of global ocean circulation and tides: Ph. D. diss. Univ. of Hamburg, Germany, 2002. 129 p.

28. Verbrugge N., Mulet S., Guinehut S., Buongiorno-Nardelli B. ARMOR3D: A 3D multi-observations T, S, U, V product of the ocean // Geophys. Res. Abstr. 2017. V. 19. EGU2017–17579.

29. Volkov D. L., Pujol M.- I. Quality assessment of a satellite altimetry data product in the Nordic, Barents, and Kara seas // J. Geophys. Res. Oceans. 2012. R. 117. C03025. doi:10.1029/2011JC007557

30. Volkov D. L., Landerer F. W., Kirillov S. A. The genesis of sea level variability in the Barents Sea // Contin. Shelf Res. 2013. № 66. R. 92–104. doi:10.1016/j.csr.2013.07.007

31. Wahr J., Swenson S., Velicogna I. Accuracy of GRACE mass estimates // Geophys. Res. Lett. 2006. 33. L06401. doi:10.1029/2005GL025305

Система Orphus

Loading...
Up