The Water Structure and Dynamics of the Shantar Islands National Park Aquatory (the Sea of Okhotsk) According to Satellite Data

 
PIIS020596140003231-5-1
DOI10.31857/S020596140003231-5
Publication type Article
Status Published
Authors
Affiliation: Pacific Oceanological Institute. IN AND. Ilyicheva FED RAS
Address: Russian Federation
Affiliation: Pacific Oceanological Institute. IN AND. Ilyicheva FED RAS
Address: Russian Federation
Affiliation: Pacific Oceanological Institute. IN AND. Ilyicheva FED RAS
Address: Russian Federation
Journal nameIssledovanie Zemli iz kosmosa
EditionIssue 5
Pages3-14
Abstract

The Shantar Islands National Park (north-western shelf of the Sea of Okhotsk) was established to preserve the unique marine and terrestrial ecosystems which support a wide variety of wildlife. The water structure and dynamics of the Shantar Islands National Park aquatory are studied based on multi-sensor satellite images (Terra/Aqua MODIS, Landsat-7 ETM+, Landsat-8 OLI/TIRS, Sentinel-2A MSI) and oceanographic observations. The circulation of the Shantar Islands region (dynamics) are largely determined by the competition between strong tidal current and freshwater input from river. The water structure forms under the infl uence of far-fi eld low-salinity river plumes in the shallow bays and vigorous tidal mixing in the localized areas. The interaction of tidal fl ow with a complex topography and bathymetry including headlands, islands, straits and shoals create a rich submesoscale fi eld includes of tidal jets, multiple eddies, coherent vortices and wakes, all of which can impact marine ecology and biology around Shantar Islands.

KeywordsSea of Okhotsk, the Shantar Islands National Park, multi-sensor satellite data, structure and dynamics of coastal waters, tidal currents, river plumes, tidal mixing, submesoscale tidal eddies
Received26.12.2018
Publication date26.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1430

Readers community rating: votes 0

1. Gidrometeorologiya i gidrokhimiya morej. T. IX. Okhotskoe more. Vyp.1. Gidrometeorologicheskie usloviya / Pod red. B. Kh. Glukhovskogo, N. P. Goptareva, F. S. Terzieva. SPb.: Gidrometeoizdat, 2003. 398 s.

2. Ginzburg A. I., Fedorov K. N. Gribovidnye techeniya v okeane (po dannym analiza sputnikovykh izobrazhenij) // Issled. Zemli iz kosmosa. 1984. № 3. S. 18–26.

3. Zhabin I. A., Dubina V. A. Struktura fronta prilivnogo peremeshivaniya v rajone Shantarskikh ostrovov (Okhotskoe more) po dannym sputnikovykh nablyudenij // Issled. Zemli iz kosmosa. 2012. № 2. S. 83–89.

4. Kagan B. A., Romanenkov D. A., Sof'ina E. V. Summarnyj prilivnoj drejf l'da i indutsiruemye l'dom izmeneniya dinamiki i ehnergetiki summarnogo priliva na sibirskom kontinental'nom shel'fe // Okeanologiya. 2008. T. 48. № 3. S. 345–355.

5. Rogachev K. A. Sputnikovye nablyudeniya regulyarnykh vikhrej v zalivakh Shantarskogo arkhipelaga, Okhotskoe more // Issled. Zemli iz kosmosa. 2012. № 1. S. 54–60.

6. Bloor S. The transition to turbulence in the wake of a circular cylinder // J. Fluid Mech. 1964. V. 19. P. 290–304.

7. Brown C. A., Jackson G. A., Brooks D. A. Particle transport through a narrow tidal inlet due to tidal forcing and implications for larval // J. Geophys. Res. 2000. V. 105(C10). P. 24141–24156.

8. Colbo K. Lateral Reynolds stress and eddy viscosity in a coastal strait // J. Phys. Oceanogr. 2006. V. 36. P. 770–782.

9. Imasato N. What is tide-induced residual current? // J. Phys. Oceanogr. 1983. V. 13. P. 1307–1317.

10. Kowalik Z., Polyakov I. Tides in the Sea of Okhotsk // J. Phys. Oceanogr. 1998. V. 28. P. 1389–1409.

11. Mann K. H., Lazier J. R.N. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. L.: Blackwell Publishing, 2006. 496 r.

12. Lee H. J., Chao S. Y., Fan K.- L., Kuo T. Y. Tide-induced eddies and upwelling in a semi-enclosed basin: Nan Wan // Estuar., Coastal and Shelf Sci. 1999. V. 49(6). P. 775–787.

13. Nekrasov A. V., Romanenkov P. A. Impact of tidal power damps upon tides and environmental conditions in the Sea of Okhotsk // Cont. Shelf Res. 2010. V. 30. P. 538–552.

14. Pattiaratchi C., James A., Collins M. Island wakes and headland eddies: A comparison between remotely sensed data and laboratory experiments // J. Geophys. Res. 1987. V. 92(S1). P. 783–794.

15. Robinson I. Tidal vorticity and residual circulation // Deep Sea Res. 1981. V. 28A. P. 195–212.

16. Rogachev K., Carmack E. C., Foreman M. G. Bowhead whales feed on plankton concentrated by estuarine and tidal currents in Academy Bay, Sea of Okhotsk // Cont. Shelf Res. 2008. № 28 (14). P. 1811–1826.

17. Geyer W. R., Signell R. P. Measurements of tidal fl ow around a headland with a shipboard acoustic Doppler current profi ler // J. Geophys. Res. 1990. V. 95(S3). P. 3189–3197.

18. Signell R. P., Geyer W. R. Transient eddy formation around headlands // J. Geophys. Res. 1991. V. 96 (C2). P. 2561–2575.

19. Svejkovsky S. Sea surface fl ow estimation from Advanced Very High Resolution Radiometer and Costal Zone Color Scanner satellite imagery: a verifcation study // J. Geophys. Res. 1988. V. 93(S6). P. 6735–6743.

20. Takeoka H., Murao H. Tidal currents infl uenced by topographic eddies in Uchiumi Bay // J. Oceanogr. 1993. V. 49. R. 491–501.

21. Wells M. G., van He? st G. J.F. Dipole formation by tidal fl ow in a channel // Proc. Int. Symp. on Shallow Flows. 16–18 June 2003. Delft, Netherlands: Balkema, 2004. P. 63–70.

Система Orphus

Loading...
Up