Combustion of lean hydrogen-based mixtures in spark ignition engine

 
PIIS000233100002367-7-1
DOI10.31857/S000233100002367-7
Publication type Article
Status Published
Authors
Affiliation: Joint institute for high temperatures of RAS
Address: Russian Federation, Moscow
Affiliation: Joint institute for high temperatures of RAS
Address: Russian Federation, Moscow
Affiliation: Joint institute for high temperatures of RAS
Address: Russian Federation, Moscow
Affiliation: Joint institute for high temperatures of RAS
Address: Russian Federation, Moscow
Journal nameIzvestiia Rossiiskoi akademii nauk. Energetika
EditionIssue 4
Pages87-99
Abstract

The paper presents results of experimental and numerical study of combustion of lean hydrogen-based mixtures in spark-ignition engine. Hydrogen and hydrogen (90% vol.) – methane (10%) mixtures at 1,4–3,0 air-to-fuel equivalence ratio were used as fuels. Backfire was observed experimentally in the engine running on the hydrogen-air mixture at 1,4 equivalence ratio. On the basis of experimental indicator diagrams general engine operating parameters were determined. Indicated efficiency of hydrogen-air mixtures was equal to 30– 32%. Maximum indicated efficiency, 37%, was obtained for mixtures with methane addition and with the use of earlier spark timing. The dependence of efficiency on equivalence ratio was found to be weak. Two-dimensional numerical modelling of mixtures dynamics and combustion performed according to conditions of experiments confirmed general qualitative  dependencies found experimentally. Sufficient incomplete combustion of hydrogen, up to 60%, was found in case of engine running on hydrogen with air-to-fuel equivalence ratio 3,0.

Keywordshydrogen, methane, spark-ignition engine, indicator diagram, lean mixtures, experiment, numerical modelling
Received27.11.2018
Publication date04.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1810

Readers community rating: votes 0

1. Batenin V.M., Zajchenko V.M., Leont'ev A.I., Chernyavskij A.A. Kontseptsiya razvitiya raspredelennoj ehnergetiki v Rossii // Izv. RAN. Ehnergetika. 2017. № 1. S. 3–18.

2. Zajchenko V.M., Chernyavskij A.A. Sravnitel'nye kharakteristiki raspredelennykh i tsentralizovannykh skhem ehnergosnabzheniya // Promyshlennaya ehnergetika. 2016. № 1. S. 2–8.

3. Da Rosa A.V. Fundamentals of renewable energy processes. Oxford (UK): Academic Press, 2013. 389 p.

4. Zajchenko V.M., Chernyavskij A.A. Avtonomnye sistemy ehnergosnabzheniya. M.: Nedra, 2015. 219 s.

5. Smygalina A.E., Zajchenko V.M., Ivanov M.F., Kiverin A.D. Gorenie smesej na osnove vodoroda v gazoporshnevom dvigatele // Izv. RAN. Ehnergetika. 2015. № 2. S. 120–130.

6. Ivanov M.F., Kiverin A.D., Smygalina A.E., Zajchenko V.M. Ob ispol'zovanii vodoroda v kachestve topliva dlya dvigatelej v ehnergeticheskom tsikle udalennykh proizvodstvennykh ob'ektov // ZhTF. 2018. 88. № 1. S. 147–150.

7. Morozov G. Vodorod – toplivo buduschego // Katera i yakhty. 1984. № 2. S. 4–7.

8. Mischenko A.I. Primenenie vodoroda dlya avtomobil'nykh dvigatelej. Kiev: Naukova dumka, 1984. 143 s.

9. Hydrogen fuel cell engines and related technologies: Rev 0, 2001. https://www1.eere.energy.gov/hydrogenandfuelcells/tech_validation/pdfs/fcm01r0.pdf

10. Magidovich L.E., Rumyantsev V.V. Usloviya sgoraniya vodorodo-vozdushnoj smesi v dvigatelyakh vnutrennego sgoraniya // Dvigatelestroenie. 1983. № 5. S. 59–60.

11. Levterov A.M., Savitskij V.D. Ehksperimental'nyj obrazets vodorodnogo avtomobilya na baze modeli Gaz-2705 // Avtomobil'nyj transport. 2008. № 22. S. 17–23.

12. Shudo T. Improving thermal efficiency by reducing cooling losses in hydrogen combustion engines // Intern. J. Hydrogen Energy. 2007. V. 32(17). P. 4285–4293.

13. Ivanov M.F., Kiverin A.D., Yakovenko I.S., Liberman M.A. Hydrogen-oxygen f lame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls // Intern. J. Hydrogen Energy. 2013. V. 38(36). P. 16427–16440.

14. Ivanov M.F., Kiverin A.D., Klumov B.A., Fortov V.E. Ot goreniya i detonatsii k okislam azota // UFN. 2014. T. 184. № 3. S. 247–264.

15. O Conaire M., Curran H.J., Simmie J.M. et al. A Comprehensive modeling study of hydrogen oxidation // Intern. J. Chem. Kinetics. 2004. V. 36(11). P. 603–622.

16. Kazakov A., Frenklach M. http://www.me.berkeley.edu/drm/

17. Heywood J.B. Internal Combustion Engine Fundamentals. N.Y.: Mc. Graw Hill, 1988. 930 p.

18. Korotkikh A.G. Teploprovodnost' materialov. Tomsk: Izd. Tomskogo politekhn. univers., 2011. 97 s.

19. Bane S.P.M., Ziegler J.L., Shepherd J.E. Investigation of the effect of electrode geometry on spark ignition // Combustion and Flame. 2015. V. 162. P. 462–469.

20. Voinov A.N. Sgoranie v bystrokhodnykh porshnevykh dvigatelyakh. M.: Mashinostroenie, 1977. 277 s.

21. Shudo T. A new equation to describe cooling loss in hydrogen combustion engines which was developed from the equation for turbulent heat transfer of pipe flows // 6th World Conf. on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics. April 17–21, 2005. Matsushima, Miyagi, Japan.

22. Tsyplakov A.I. Gazoporshnevye ehnergoustanovki na generatornom gaze: osobennosti konstruktsii, opyt ehkspluatatsii, rezul'taty ehksperimental'nykh issledovanij. Preprint OIVT RAN, № 3-512, 2013. 39 s.

Система Orphus

Loading...
Up