Peculiar properties of emissivity of high-temperature carbon radiative cooling nozzles with ceramic coatings

 
PIIS000233100003218-3-1
DOI10.31857/S000233100003218-3
Publication type Article
Status Published
Authors
Affiliation: The state Scientific Centre of Russian Federation – Federal State Unitary Enterprise “Research Centre named after M.V. Keldysh”
Address: Russian Federation, Moscow
Affiliation: The state Scientific Centre of Russian Federation – Federal State Unitary Enterprise “Research Centre named after M.V. Keldysh”
Address: Russian Federation, Moscow
Journal nameIzvestiia Rossiiskoi akademii nauk. Energetika
EditionIssue 5
Pages67-79
Abstract

Taking into account the absorption, scattering, and emission of radiation by particles and ceramics (C, SiO2, SiC, Al2O3, AlN) we have solved the spectral equation of radiation transfer and we have useda huge amount of M.V. Keldysh Center experimental data to estimate the worst accuracy of the radiative cooling nozzle (RCN) temperature measurementfulfiledat M.V. Keldysh Center by means ofthermovision system at the level of~ 250 K. An analytical relationship has been obtainedby the authors and it is proposed to increase the accuracy of temperature measurement significantly. We have also demonstrated the possibility of a significant decrease in the efficiency of the radiation cooling of RCN due to partial locking of its own thermal radiation by a ceramic coating in the thermal range of wavelengths from 0.5 to 10 µm.

Keywordsnozzle, RCN, C, SiO2, SiC, Al2O3, AlN, temperature measurement, thermovision system, ceramic coating, optical properties, radiative cooling
Publication date10.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1556

Readers community rating: votes 0

1. Vavilov V.P. Infrakrasnaya termografiya i teplovoj kontrol'. M.: ID Spektr. 2009.

2. Gubertov A.M., Koshlakov V.V., Mironov V.V., Rubinskij V.R., Pashutov A.V., Antipov E.A., Bratukhin N.A., Volkov N.N., Volkova L.I., Tsatsuev S.M., Tlevtsezhev V.V. Dli‑ tel'nye ognevye ispytaniya sopel raketnykh dvigatelej na osnove uglerodnykh kompo‑ zitsionnykh materialov //Izv. RAN.Ehnergetika. 2012. № 5.S.124–130.

3. Mironov V.V., Volkov N.N., Volkova L.I., Dobriyanov S.K., Baskakov V.N., Sokolova N.A., Kalinin S.V., Gurina I.N., Turut'ko A.I. Issledovanie mekhanizmov razru‑ sheniya uglerod-keramicheskikh kompozitsionnykh materialov v vysokotemperaturnykh okislitel'nykh sredakh //Izv. RAN. Ehnergetika. 2016. № 6. S. 113–124.

4. Gubertov A.M., Mironov V.V., Volkov N.N., Volkova L.I., Koshlakov V.V., Tsatsuev S.M. Raschetnyj analiz ognevykh ispytanij nasadkov radiatsionnogo okhlazhdeniya na osno‑ ve uglerodnykh kompozitsionnykh materialov v sostave kamery zhidkostnogo raketnogo dvigatelya // Izv. RAN. Ehnergetika. 2015. № 3. S. 58–63.

5. Kovalkin S.S., Kolpakov A.V., Mironov V.V. Primenenie metoda Monte Karlo dlya ras‑ cheta perenosa ehnergii izlucheniem v kanalakh ehnergeticheskikh ustanovok //Izv. RAN. Ehnergetika. 2012. № 4. S. 90–98.

6. Gurina I.N., Volkova L.I., Volkov N.N., Kovalkin S.S., Kolpakov A.V., Mironov V.V. Is‑ pol'zovanie chislennogo modelirovaniya radiatsionno-konvektivnogo teploobmena dlya otsenki primenimosti ehksperimental'nykh rezul'tatov, poluchennykh v ustanovke dlya vysotnykh ispytanij sovremennykh zhidkostnykh raketnykh dvigatelej, k real'nym usloviyam ikh raboty //VI Rossijskaya konferentsiya po teploobmenu. 2014.S. 1198.

7. Gurina I.N., Volkova L.I., Volkov N.N., Kolpakov A.V., Mironov V.V. Programmnyj kompleks dlya chislennogo modelirovaniya gazodinamicheskikh protsessov, teplovogo sostoyaniya i razrusheniya materialov stenok v soplakh raketnykh dvigatelej razlichnykh tipov (GDHEATRC) //Federal'naya sluzhba po intellektual'noj sobstvennosti. Re‑ estr programm dlya EhVM. 27 avgusta 2015. Pravoobladatel': GNTsFGUP «TsentrKel‑ dysha». Svidetel'stvo o gosudarstvennoj registratsii № 2015619274.

8. FLIR Advanced Thermal Solutions providing thermal solutions for R&D and Scienceand development researchers // FLIR Systems Inc. 2018.Oshibka! Nedopustimyj ob'ekt giperssylki.

9. Ibarra-Castanedo C., Susa M., Klein M., Grenier M., Piau J.-M., Ben-Larbi W., Bendada A., Maldague X. Infrared thermography: principle and applications to aircraft materials. //http:// www.ndt.net/article/aero2008/aero08_maldague.pdf.

10. FGUP «VNIIOFI» http://www.vniiofi.ru/about.html

11. Surzhikov S.T. Teplovoe izluchenie gazov i plazmy. M.: Izd. MGTU im. N.Eh. Baumana, 2004.S.544.

12. Dombrovsky L.A., Baillis D. Thermal Radiation in Disperse Systems: An Engineering Approach. New York: Begell House. 2010. P. 689.

13. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983. P. 544.

14. Lind A.C., Greenberg J.M. Electromagnetic scattering by Obliquely Oriented Cylinders. // J. Appl. Phys. 1966. V. 37. № . 8. P. 3195.

15. Kolpakov A.V., Dombrovskij L.A., Yukina Eh.P. Raschetnoe issledovanie rasseyaniya sveta dispersnymi sistemami iz tsilindricheskikh volokon // Tr. XV konf. molodykh uche‑ nykh.Mosk. fiz. – tekhn. in-t. Ch. 2. M.: MFTI, 1990. S. 4–9. Dep. v VINITI 10.12.90. № 6175-V90.

16. Dombrovskij L.A., Kolpakov A.V., Yukina Eh.P. Raschet radiatsionno-konduktivnogo te‑ ploobmena pri termicheskoj obrabotke sinteticheskikh voloknistykh materialov // Prikladnye zadachi aehromekhaniki i geokosmicheskoj fiziki. Mezhdvedomstv. sb. M.: MFTI, 1991. S. 58–62.

17. Kolpakov A.V. Raschetno-teoreticheskaya otsenka vozmozhnosti kachestvennogo izmene‑ niya radiatsionnogo teplovogo potoka k stenke raketnogo dvigatelya posredstvom is‑ pol'zovaniya osobennostej radiatsionnykh svojstv nanochastits. //XV Minskij mezh‑ dunarodnyj forum po teplo- i massoobmenu. 23–26 maya 2016. Minsk: NANBelarusi. Institut teplo- i massobmena imeni A.V. Lykova.T. 2.S. 260–263.http://www.mif15. itmo.by/doc/mif_2016/Tom2.pdf

18. Cherepanov V.V., Alifanov O.M. Modellingtechniquesforultra-porousheat-protect‑ ivematerialsspectralproperties // Computational and Applied Mathematics. 2015. V. 36. № 1.P.3–22.

19. Hendricks T.J., Howell J.R. Absorption/Scattering Coefficients and Scattering Phase Functions in Reticulated Porous Ceramics // J. Heat Transfer.1996.V.118. № 1.P.79–87.

20. Choyke W.J., Palik E.D. Silicon carbide (SiC) // In: Handbook of Optical Constants of solids. Orlando: Acad.Press,1985. V. 1. P. 587.

21. Choyke W.J., Patrik L. Refractive index and low frecuency dielectric constant of 6HSiC // J. Opti. Soc. Am. 1968. V. 58. № 3.P.377–379.

22. Pidan S., Auweter-Kurtz M., Herdrich G., Fertig M. Recombination coefficients and spectral emissivity of silicon carbide-based thermal protection materials // J. Thermophysics and Heat Transfer. 2005. V. 19. № 4. P. 566–571.

23. Zhang Y., Dai J., Lu X., Wu Y. Effects of temperature on the spectral emissivity of C/SiC composites // Ceramics-Silicaty. 2016.V.60.№ 2.P.152–155. https://www.irsm.cas.cz/ materialy/cs_content/2016_doi/Zhang_CS_2016_0023.pdf

24. Zhao Y., Tang G.H. Monte Carlo study on extinction coefficient of silicon carbide porous media used for solar receiver // Int. J. Heat and Mass Transfer. 2016.V. 92.P. 1061–1065.

25. Stull V.R., Plass G.N. Emissivity of dispersed carbon particles // J. Opt. Soc. Am. 1960. V. 50. № 2. P. 121–129.

26. Dalzell W.H, Sarofim A.P. Optical constants of soot and their application to heatflux calculations // ASME J. Heat Transfer. 1969. V. 91. № 1. P. 100–104.

27. Liebert C.H., Hibbard R.R. Spectral emittance of soot // Lewis Research Center. NASA Rep. 1970. TND‑5647.

28. Moiseev S.S., Petrov V.A., Stepanov S.V. Opticheskie svojstva vysokoporistoj kvar‑ tsevoj keramiki // Teplofizika vysokikh temperatur. 2006. T. 44. № .5. S. 764–769.

29. Malitson I.H. Interspecimen comparison of the refractive index of fused silica. // J. Opt. Soc. of Am. 1965. V. 55. № 10. P. 1205–1209.

30. Borodaj S.P., Betina T.A. Temperaturnaya zavisimost' izluchatel'noj sposobno‑ sti besporistoj kvartsevoj keramiki // Zh. prikl. spektroskopii. 1988. T. 48. № 1. S. 114–119.

31. Mironov R.A., Zabezhajlov M.O., Rusin M.Yu., Cherepanov V.V. Raschetno-ehksperimen‑ tal'noe opredelenie temperaturnoj zavisimosti spektral'nykh i integral'nykh ko‑ ehffitsientov izlucheniya kvartsevoj keramiki razlichnoj poristosti. // Teplofizika vysokikh temperatur. 2016. T. 54. № 5. S. 724–732.

32. Mironov R.A., Zabezhajlov M.O., Borodaj S.P. Opredelenie pokazatelej pogloscheniya, rasseyaniya i izluchatel'noj sposobnosti kvartsevoj keramiki po izmerennym spek‑ tram koehffitsienta diffuznogo otrazheniya v diapazone dlin voln 0.5–5 mkm // Te‑ plovye protsessy v tekhnike. 2013. T. 5. № 6. S. 262–269.

33. Petrov V.A. Opticheskie svojstva kremnievykh stekol pri vysokikh temperaturakh v oblasti poluprozrachnosti. Obzor termofizicheskikh svojstv veschestv //M.: IVT AN SSSR, 1979.T. 17. № 3.

34. Yang P., Cheng Q., Zhang Zh. Radiative properties of ceramic Al2O3, AlN and Si3N4: Modeling // Int. J. Thermophysics. 2017. V. 38. № 8. P. 124–142.

35. Dombrovskij L. A., Yukina Eh.P., Kolpakov A.B., Ivanov V.A. Metodika rascheta teplo‑ vogo razrusheniya ugleplastika pod dejstviem intensivnogo infrakrasnogo izluche‑ niya // Teplofizika vysokikh temperatur. 1993. T. 31. № 4. C.619–625.

Система Orphus

Loading...
Up