Adequacy assessment of electric power systems with wind power stations and energy storages

 
PIIS000233100003211-6-1
DOI10.31857/S000233100003211-6
Publication type Article
Status Published
Authors
Affiliation: Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences
Address: Russian Federation, Irkutsk
Affiliation: Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences
Address: Russian Federation, Irkutsk
Journal nameIzvestiia Rossiiskoi akademii nauk. Energetika
EditionIssue 5
Pages15-25
Abstract

The method of adequacy analysis of electric power systems with wind farms and energy storages is presented in the article. Integration of energy storages in electric power system allows to stabilize of basic system parameters under their nominal meanings. For another thing it is possible to redistribute of electricity between proficit and deficit modes of the system. This fact says of increasing of the adequacy level. Simulations in the method is based om Monte Carlo method. We use the modified model of power shortage estimation with quadratic power losses in power lines. The model takes into account processes of accumulation and consuming of electricity. The given model also has several positive properties influencing on results of adequacy analysis. For analyzing of wind speed and air density in considered regions we use software «Local analysis of environmental parameters and solar radiation». Applying of results of detailed analysis of long-term meteorological data allows to increase of validity of adequacy indexes. 

Keywordselectric power system, wind power station, energy storage, adequacy analysis, reliability analysis, long-term data
Publication date10.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1440

Readers community rating: votes 0

1. Kovalev G.F., Lebedeva L.M. Nadyozhnost' sistem ehlektroehnergetiki. Novosibirsk: Nauka, 2015. 224 c.

2. Billinton R., Allan R.N. Reliability Evaluation of Power Systems. New York: Plenum Publishing 1996. R. 540

3. Chukreev Yu.Ya. Modeli obespecheniya nadezhnosti ehlektroehnergeticheskikh sistem. Sy‑ ktyvkar, 1995. 176 s.

4. Rudenko Yu.N., Chel'tsov M.B. Nadezhnost' i rezervirovanie v ehlektroehnergeticheskikh sistemakh. Novosibirsk: Nauka, 1974. 263 s.

5. Kovalev G.F., Lebedeva L.M. Kompleks modelej optimizatsii rezhimov raschetnykh so‑ stoyanij pri otsen-ke nadezhnosti ehlektroehnergeticheskikh sistem. Irkutsk: ISEhM SO RAN, 2000. 73 s.

6. Krupenev D.S., Perzhabinskij S.M. Algoritm optimizatsii balansovoj nadezhnosti ehlektroehnergeticheskikh sistem // Izv. RAN. Ehnergetika. 2014. № 2. S. 96–106.

7. Krupenyov D.S., Perzhabinskij S.M. Algoritm optimizatsii nadezhnosti ehlektroeh‑ nergeticheskikh sistem s ispol'zovaniem matematicheskogo ozhidaniya dvojstvennykh otsenok // Upravlenie bol'shimi sistemami. 2015. Vyp.54. S. 166–178.

8. Krupenev D.S., Perzhabinskij S.M. Otsenka nadezhnosti ehlektroehnergeticheskikh sistem s vetrovymi ehlektrostantsiyami // Izv. RAN. Ehnergetika. 2017. № 2. S. 39–47.

9. Li. Y., Zio E. Uncertainty analysis of the adequacy assessment model of a distributed generation system // Renewable Energy. 2012. V. 41. P. 235–244.

10. Rocchetta R., Li. Y.F., Zio E. Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions // Reliability Engineering & System Safety. 2015. V. 136. P. 47–61.

11. Li. Y., Zio E. A multi-state model for the reliability assessment of a distributed generation system via universal generating function // Reliability Engin. & System Safety. 2012. V. 106. P. 28–36.

12. Oh U., Choi J., Kim H-h. Development of Reliability Contribution Function of Power System including Wind Turbine Generators combined with Battery Energy Storage System // The Transactions of The Korean Institute of Electrical Engineers. 2016. V. 65. P. 371–381.

13. Wangdee W., Billinton R. Reliability assessment of bulk electric systems containing large wind farms // Intern. J. Electrical Power & Energy Systems. 2007. V. 29. P. 759–766.

14. Xie K., Bilinton R. Energy and reliability benefits of wind energy conversion systems // Renewable Energy. 2011. V. 366. P. 1983–1988.

15. Billinton R., Chen H., Ghajar R. Time-series models for reliability evaluation of power systems including wind energy // Reliability Evaluation of Power Systems. 1996. V. 36. P. 1253–1261.

16. Ak R., Li Y-F., Vitelli V., Zio E. Adequacy assessment of a wind-integrated system using neural network-based interval predictions of wind power generation and load // Intern. J. of Electrical Power & Energy Systems. 2018. V. 98. P. 213–226.

17. Shi N., Luo Y. Energy Storage System Sizing Based on a Reliability Assessment of Power Systems Integrated with Wind Power // Sustainability. 2017. V. 9. P. 395–415.

18. Scheu M.N., Matha D., Muskulus M. Validation of a Markov-based Weather Model for Simulation of O&M for Offshore Wind Farms // The Twenty-second International Offshore and Polar Engineering Conf., 2012. P. 1–6.

19. Scheu M.N., Kolios A., Fischer T., Brennan F. Influence of statistical uncertainty of component reliability estimations on offshore wind farm availability // Reliability Engin. & System Safety. 2017. V. 168. P. 28–39.

20. Ilinca A., McCarthy E., Chaumel J. – L., Retiveau J. – L. Wind potential assessment of Quebec Province // Renewable Energy. 2003. V. 28. P. 1881–1897.

21. Jojola-Talburt W., Reimann J., John A. Native American Wind Resource Atlas. Office of Indian Energy and Economic Development. Division of Energy and Mineral Development. 2010 Edition. URL: https://www.bia.gov/sites/bia.gov/files/assets/as-ia/ieed/ieed/pdf/ idc013229.pdf

22. Nikolaev V.G., Ganaga S.V., Kudryashov Yu.I. Natsional'nyj kadastr vetroehnergeticheskikh resursov Rossii i metodicheskie osnovy ikh opredeleniya. M.: Atmograf, 2008. 584 s.

23. Nikolaev V.G. Resursnoe i tekhniko-ehkonomicheskoe obosnovanie shirokomasshtabnogo razvitiya vetroehnergetiki v Rossii. M.: Atmograf, 2011, 501 s.

24. Zorkal'tsev V.I., Perzhabinskij S.M. Model' optimizatsii defitsita moschnosti ehlek‑ troehnergeticheskoj sistemy // Upravlenie bol'shimi sistemami. M.: IPU RAN, 2010. Spets. vyp. 30.1. Setevye modeli v upravlenii. S. 300–318.

25. Karamov D.N. Matematicheskoe modelirovanie solnechnoj radiatsii s ispol'zovani‑ em mnogoletnikh meteorologicheskikh ryadov nakhodyaschikhsya v otkrytom dostupe // Izv. Tomskogo politekhn. univers. Inzhiniring georesursov. 2017. T. 328. № 6. S. 28–38.

26. Karamov D.N. Formirovanie iskhodnykh meteorologicheskikh massivov s ispol'zovani‑ em mnogoletnikh ryadov FM 12 Synop i METAR v sistemnykh ehnergeticheskikh issledova‑ niyakh // Izv. Tomskogo politekhn. univers. Inzhiniring georesursov. 2018. T. 235. № 1.

27. Perzhabinsky S.M., Karamov D.N. Method for analysing the adequacy of electric power systems with wind power plants and energy storages. E3S Web of Conf. 2017. V. 25. № . 1. P. 1–5.

28. Wong L.T., Chow W.K. Solar radiation model // Applied Energy. 2001. V. 69. P. 191–224.

29. Kasten F., Czeplak G. Solar and terrestrial radiation dependent on the amount and type of cloud // Solar Energy. 1980. V. 24. P. 177–189.

30. Zorkal'tsev V.I., Perzhabinskij S.M. Modeli otsenki defitsita moschnosti ehlektroeh‑ nergeticheskikh sistem // Sibirskij zh. industr. matematiki. 2012. № 1(49). S. 34–43.

Система Orphus

Loading...
Up