Chromogenic Spiroindolinebenzopyrans of the Oxadiazole Series with Photodriven Ionochromic Properties

 
PIIS086956520001194-6-1
DOI10.31857/S086956520001194-6
Publication type Article
Status Published
Authors
Occupation: Leading Research Fellow
Affiliation: Institute of Physical and Organic Chemistry (Southern Federal University)
Affiliation: Institute of Physical and Organic Chemistry (Southern Federal University)
Affiliation: Institute of Physical and Organic Chemistry (Southern Federal University)
Affiliation: Institute of Physical and Organic Chemistry (Southern Federal University)
Journal nameDoklady Akademii nauk
EditionVolume 481 Issue 2
Pages156-160
Abstract

The obtained novel photochromic 8-oxadiazolyl substituted spirobenzopyran-indolines undergo cation induced isomerizations under the control of light irradiation.

Keywords
Received12.10.2018
Publication date14.10.2018
Number of characters180
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1251

Readers community rating: votes 0

1. Feringa B.L., Browne W.R. (Eds.). Molecular Switches (second ed.). Weinheim.: Wiley, 2011.

2. Minkin V.I. Fotokontroliruemye molekulyarnye pereklyuchateli na osnove bistabil'nykh spirotsiklicheskikh organicheskikh i koordinatsionnykh soedinenij. // Uspekhi khimii. 2013. T. 82, № 1. 1-26.

3. Klajn R. Spiropyran-based dynamic materials. // Chem. Soc. Rev. 2014. Vol. 43. P. 148-184.

4. Coudret C., Chernyshev A.V., Metelitsa A.V., Micheau J.C. New Trends in Spiro-compounds Photochromic Metals Sensors: Quantitative Aspects. // Photon-Working Switches. Tokyo.: Springer, 2017. P. 3-35.

5. Paramonov S.V., Lokshin V., Fedorova O.A. Spiropyran, chromene or spirooxazine ligands: insights into mutual relations between complexing and photochromic properties. // J. Photochem. Photobiol. C: Photochem. Rev. 2011. Vol. 12, N 3. P. 209–236.

6. Natali M., Giordani S. Molecular switches as photocontrollable “smart” receptors. // Chem. Soc. Rev. 2012. Vol. 41. P. 4010– 4029.

7. Qin M., Huang Yu., Li F., Song Y. Photochromic sensors: a versatile approach for recognition and discrimination. // J. Mater. Chem. C. 2015. Vol.3. P. 9265-9275.

8. Hobley J., Malatesta V., Millini R., Montanari L., Parker W. O. N. Proton exchange and isomerisation reactions of photochromic and reverse photochromic spiro-pyrans and their merocyanine forms. // Phys. Chem. Chem. Phys. 1999. Vol. 1. P. 3259-3267.

9. Hobley J., Malatesta V., Giroldini W., Stringo W. π-Cloud and non-bonding or H-bond connectivities in photochromic spiropyrans and their merocyanines sensed by 13 C deuterium isotope shifts. // Phys. Chem. Chem. Phys. 2000. Vol. 2. P. 53-56.

10. Hobley J., Malatesta V. Energy barrier to TTC–TTT isomerisation for the merocyanine of a photochromic spiropyran. // Phys. Chem. Chem. Phys. 2000. Vol. 2. P. 57-59.

11. Wolff C., Kind J., Schenderlein H., Bartling H., Feldmeier C., Gschwind R. M., Biesalski M., Thiele C.M. Studies of a photochromic model system using NMR with ex-situ and in-situ irradiation devices. // Magn. Reson. Chem. 2016. Vol. 54, N 6. 485-491.

Система Orphus

Loading...
Up