Electrical Resistance of Cu-Zr Melts

Publication type Article
Status Published
Institute of Metallurgy, Ural Branch of the RAS
Ural Federal University
Address: Russian Federation
Affiliation: Institute of Metallurgy, Ural Branch of the RAS
Address: Russian Federation
Institute of Metallurgy, Ural Branch of the RAS
Ural Federal University
Address: Russian Federation
Affiliation: Institute of Metallurgy, Ural Branch of the RAS
Address: Russian Federation
Journal nameDoklady Akademii nauk
EditionVolume 483 Issue 6

For the first time, the electrical resistivity of Cu64.5Zr35.5, Cu50Zr50 and Cu33.3Zr66.7 alloys in a liquid state up to 1600 K has been measured by contactless method in rotating magnetic field. The measurements were carried out in the cooling process in a helium atmosphere with a purity of 99.995%. The error of the electrical resistivity determination did not exceed 5%. It is found that the electrical resistivity of liquid alloys Cu64.5Zr35.5, Cu50Zr50 and Cu33.3Zr66.7 decreases linearly with increasing temperature, while for liquid copper and zirconium it increases with temperature. The concentration dependences of the electrical resistivity and its temperature coefficient have a maximum at 55 at. % and a minimum of about 60 at. % Zr, respectively. The obtained concentration dependences are similar to the dependences obtained for amorphous alloys, and are explained from the position of the Ziman theory.

Publication date26.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1284

Readers community rating: votes 0

1. Inoue A., Masumoto T., Yano N. Production of metal-zirconium type amorphous wires and their mechanical strength and structural relaxation // J. Mater. Sci. 1984. V. 19. P. 3786–3795.

2. Kwon O. J., Kim Y. C., Kim K. B., Lee Y. K., Fleury E. Formation of Amorphous Phase in the Binary Cu–Zr Alloy System // Met. Mater. Int. 2006. V. 12. P. 207–212.

3. Gantmakher V.F., Kulesko G.I. Maximum in the temperature dependence of resistivity of some crystal alloys of the Cu–Zr system // Solid State Commun. 1985. V. 53. P. 267–268.

4. Bykov V. A., Kulikova T. V., Yagodin D. A., Filippov V. V., Shunyaev K. Yu. Teplofizicheskie i ehlektricheskie svojstva ehkviatomnogo splava CuZr // FMM. 2015. T. 116. S. 1123–1128.

5. Fan G. J., Freels M., Choo H., Liaw P. K., Li J. J. Z. Rhim Won-Kyu, Johnson W. L., Yu P., Wang W. H. Thermophysical and elastic properties of Cu50Zr50 and (Cu50Zr50)95Al5 bulk-metallic-glass-forming alloys. Appl. Phys. Lett. 2006. V. 89. P. 241917/1–241917/3.

6. Gangopadhyay A. K., Blodgett M. E., Johnson M. L., McKnight J., Wessels V., Vogt A. J., Mauro N. A., Bendert J. C., Soklaski R., Yang L., Kelton K. F. Anomalous thermal contraction of the first coordination shell in metallic alloy liquids // J. Chem. Phys. 2014. V. 140. P. 044505/1–044505/8.

7. Matula R.A. Electrical Resistivity of Copper, Gold, Palladium, and Silver // J. Phys. Chem. Ref. Data, 1979, V. 8, P. 1147-1298.

8. Korobenko V. N., Savvatimskij A. I. Temperaturnaya zavisimost' plotnosti i udel'nogo ehlektrosoprotivleniya zhidkogo tsirkoniya do 4100 K // TVT. 2001. T. 39. S. 566-572.

9. Pavuna D. On the magnitude of the electrical resistivity of liquid and glassy transition metal alloys // J. Non-Cryst. Solids. 1984. V. 61&62. P. 1353-1358.

10. Zajman D. Printsipy teorii tverdogo tela. M.: Mir, 1974. 472 s.

11. Chen H. S. Glassy metals // Rep. Prog. Phys. 1980. Vol. 43. P. 353–432.

12. Mattern N., Schops A., Kuhn U., Acker J., Khvostikova O., Eckert J. Structural behavior of CuxZr100-x metallic glass (x =35–70) // J. Non-Cryst. Solids. 2008. V. 354. P. 1054–1060.

13. Waseda Y., Chen H. S. Calculation of Electrical Resistivity and Its Temperature Coefficient of Amorphous Cu60–Zr40 Alloy Using t-Matrix // phys. stat. sol. (b). 1978. V. 87. P. 777–782.

14. Mendelev M. I., Kramer M. J., Ott R. T., Sordelet D. J., Besser M. F., Kreyssig A., Goldman A. I., Wessels V., Sahu K. K., Kelton K. F., Hyers R. W., Canepari S., Rogers J. R. Experimental and computer simulation determination of the structural changes occurring through the liquid–glass transition in Cu–Zr alloys // Phil. Mag. 2010. V. 90. P. 3795–3815.

15. Mauro N. A., Vogt A. J., Johnson M. L., Bendert J. C., Kelton K. F. Anomalous structural evolution in Cu50Zr50 glass-forming liquids // Appl. Phys. Lett. 2013. V. 103. P. 021904/1–021904/4.

Система Orphus