Biocompatibility of the Alloy Ti81Nb13Ta3Zr3

 
PIIS086956520003177-7-1
DOI10.31857/S086956520003177-7
Publication type Article
Status Published
Authors
Affiliation: Baikov Institute of Metallurgy and Materials Science, RAS
Address: Russian Federation,
Affiliation: Baikov Institute of Metallurgy and Materials Science, RAS
Address: Russian Federation
Affiliation: Voronezh State Technical University
Address: Russian Federation
Affiliation: Baikov Institute of Metallurgy and Materials Science, RAS
Address: Russian Federation
Affiliation: Institute of Cell Biophysics, RAS
Address: Russian Federation
Affiliation:
General Physics Institute, RAS
Moscows regional research clinical institute n.a. M.F. Vladimirskiy
All-Russian Research Institute of Phytopathology
Address: Russian Federation
Affiliation:
General Physics Institute, RAS
Moscows regional research clinical institute n.a. M.F. Vladimirskiy
All-Russian Research Institute of Phytopathology
Address: Russian Federation
Affiliation:
General Physics Institute, RAS
Moscows regional research clinical institute n.a. M.F. Vladimirskiy
All-Russian Research Institute of Phytopathology
Address: Russian Federation
Affiliation:
General Physics Institute, RAS
Moscows regional research clinical institute n.a. M.F. Vladimirskiy
All-Russian Research Institute of Phytopathology
Address: Russian Federation
Affiliation:
General Physics Institute, RAS
Moscows regional research clinical institute n.a. M.F. Vladimirskiy
All-Russian Research Institute of Phytopathology
Address: Russian Federation
Journal nameDoklady Akademii nauk
EditionVolume 482 Issue 2
Pages163-166
Abstract

An alloy based on titanium with additions of such low toxic metals as niobium, tantalum and zirconium (TiNbTaZr) is created. Primary ratio of elements by weight during melting: titanium (65%), niobium (20%), tantalum (10%), zirconium (5%). The TiNbTaZr alloy has a yield strength of about 550 MPa, a tensile strength of about 700 MPa, a Young's modulus of about 50 GPa, that is comparable to nitinol, but the biocompatibility of such an alloy with human cells and tissues is not known. The purpose of this work was to conduct a preliminary study of the biocompatibility of the TiNbTaZr alloy using the SH-SY5Y human cell culture. It is shown that the TiNbTaZr alloy does not have a significant short-term toxic effect on the cells that accumulate these surfaces de novo. The number of non-viable cells recorded on the surface of the TiNbTaZr alloy is 2.5 times less than that of nitinol. The mitotic index of cell culture growing on the surface of the TiNbTaZr alloy is 10% higher than for the nitinol. It is shown that the surfaces of the TiNbTaZr alloy and nitinol are equally suitable for attachment and spreading of cells. The density of cell cultures growing on the TiNbTaZr alloy is approximately 10% higher in comparison with nitinol. The TiNbTaZr alloy has slightly more pronounced biocompatibility properties than the control sample of nitinol.

Keywords
Received06.11.2018
Publication date06.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1535

Readers community rating: votes 0

1. Ratner B.D., Hoffman A.S., Schoen F.J., et al. // Biomaterials Science: An introduction to materials in medicine. 3rd Edition. Academic Press, San Diego, 2012, p. 1573.

2. Matassi F., Botti A., Sirleo L., Carulli C., Innocenti M. // Clin. Cases Miner. Bone. Metab. 2013. V. 10, P. 111–115.

3. Kasemo B. // J. Prosthet. Dent., 1983, V. 49, P. 832–837.

4. Mantripragada V.P., Lecka-Czernik B., Ebraheim N.A., Jayasuriya A.C. // J. Biomed. Mater. Res. A. 2013. V. 101, P. 3349–3364.

5. Duerig T., Pelton A., Stockel D. // Mater. Sc. Eng. 1999. V. 273-275, P. 149–160.

6. Itin V.I., Gyunter V.E., Shabalovskaya S.A., Sachdeva R.L. // Materials Characterization. 1994. V. 32. P.179–187.

7. Denkhaus E., Salnikow K. // Crit. Rev.Oncol. Hemat. 2002. V. 42. P. 35–56.

8. Gudkov S.V., Chernikov A.V., Bruskov V.I. // Rossijskij khimicheskij zhurnal. 2014. T. 58. № 3-4. S. 103–110.

9. Lankin V.Z., Tikhaze A.K. // Curr. Aging Sc. 2017. V. 10, P.18–25.

10. Ivanov V.E., Usacheva A.M., Chernikov A.V., Bruskov V.I., Gudkov S.V. // J. Photochem. Photobiol. B. 2017. V. 176. P. 36–43.

11. Sharapov M.G., Novoselov V.I., Fesenko E.E., Bruskov V.I., Gudkov S.V. // Free Radic. Res. 2017. V. 51. P. 148–166.

12. Chernikov A.V., Gudkov S.V., Usacheva A.M., Bruskov V.I. // Uspekhi biologicheskoj khimii. 2017. T. 57. S. 267–302.

13. Nasakina E.O., Baikin A.S., Sergienko K.V., Sevost'yanov M.A., Kolmakov A.G., Goncharenko B.A., Zabolotnyj V.T., Fadeev R.S., Fadeeva I.C., Gudkov S.V., Solntsev K.A. // DAN. 2015. T. 461, № 1. S. 49–52.

14. Biedler J.L., Roffler-Tarlov S., Schachner M., Freedman L.S. // Cancer Res., 1978. V. 38, P. 3751–3757.

Система Orphus

Loading...
Up