M-Estimates of Autoregression with Random Coefficients

 
PIIS000523100001247-5-1
DOI10.31857/S000523100001247-5
Publication type Article
Status Published
Authors
Affiliation: Moscow State Aviation Institute
Address: Russian Federation
Affiliation: Bauman State Technical University
Address: Russian Federation
Journal nameAvtomatika i Telemekhanika
EditionIssue 8
Pages50-65
Abstract

Asymptotic normality of the M-estimates of the autoregression parameters of the autoregression equation with random coefficients was proved. A method to calculate the asymptotic relative efficiency of the M-estimate with ρ-function relative to the least squares estimate was presented for the first-order equation. The method is based on the expansion of the asymptotic variance of the M-estimate into a converging series. The M-estimate was shown to be superior to the least-squares estimate if the regenerative process has a contaminated Gaussian distribution.

KeywordsAutoregression model with random coefficients, least squares estimate, M-estimate, asymptotic relative efficiency, Tukey distribution
Received30.09.2018
Publication date30.09.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 374

Readers community rating: votes 0

1. Anderson T. Statisticheskij analiz vremennykh ryadov. M.: Mir, 1976.

2. Khennan Eh. Mnogomernye vremennye ryady. M.: Mir, 1974.

3. Tong H. Nonlinear time series. A dynamical system approach. Oxford: Oxford University Press, 1990.

4. Tsay R.S. Analysis of financial time series. Hoboken: Wiley, 2010.

5. Tong H. Some Comments on the Canadian Lynx Data // J. Roy. Statist. Soc. Ser. A. 1977. V. 140. P. 432–436.

6. Subba Rao T. On the Theory of Bilinear Time Series Models // J. Roy. Statist. Soc. Ser. B. 1981. V. 43. No. 2. P. 244–255.

7. Tong H., Lim K.S. Threshold Autoregression, Limit Cycles and Cyclical Data // J. Roy. Statist. Soc. Ser. B. 1980. V. 42. No. 3. P. 245–292.

8. Singpurwalla N.D., Soyer R. Assessing Software Reliability Growth Using a Random Coefficient Autoregressive Process and its Ramifications // IEEE Trans. Software Engrg. 1985. V. SE–11. No. 12. P. 1456–1464.

9. Ghirmai T. A Random-Coefficient Third-Order Autoregressive Process // Digit. Signal Process. 2015. V. 38. P. 25–46.

10. Lee H.T., Yoder J.K., Mittelhammer R.C., et al. A Random Coefficient Autoregressive Markov Regime Switching Model for Dynamic Futures Hedging // J. Futures Market. 2006. V. 26. No. 2. P. 103–129.

11. Tang D., Yu J., Chen X., Makis V. An Optimal Condition-based Maintenance Policy for a Degrading System Subject to the Competing Risks of Soft and Hard Failure // Computers & Industrial Engineering. 2015. V. 83. No. 1. P. 100–110.

12. Nicholls D.F., Quinn B.G. Random coefficient autoregressive models: an introduction. N.Y.: Springer, 1982.

13. Hwang S.Y., Basawa I.V. Parameter Estimation for Generalized Random Coefficient Autoregressive Processes // J. Statist. Plann. Inference. 1998. V. 68. No. 2. P. 323–337.

14. Goryainov A.V., Goryainova E.R. Comparison of Efficiency of Estimates by the Methods of Least Absolute Deviations and Least Squares in the Autoregression Model with Random Coefficient // Autom. Remote Control. 2016. V. 77. No. 9. P. 1579–1588.

15. Aue A., Horva´th L., Steinebach J. Estimation in Random Coefficient Autoregressive Models // J. Time Ser. Anal. 2006. V. 27. N 1. P. 61–76.

16. Maronna R.A., Martin D., Yohai V. Robust Statistics: Theory and Methods. Chichester: Wiley, 2006.

17. Tjøstheim D. Estimation in Nonlinear Time Series Models // Stochast. Process. Appl. 1986. V. 21. No. 2. P. 251–273.

18. Khampel' F., Ronchetti Eh., Rausseu P., Shtaehl' V.A. Robastnost' v statistike. Podkhod na osnove funktsij vliyaniya. M.: Mir, 1989.

19. Leman Eh. Teoriya tochechnogo otsenivaniya. M.: Nauka, 1991.

20. Stout W.F. Almost sure convergence. N.Y.: Acad. Press, 1974.

21. Ibragimov I.A. Tsentral'naya predel'naya teorema dlya odnogo klassa zavisimykh sluchajnykh velichin // Teor. veroyat. i ee primenen. 1963. T. 8. Vyp. 1. S. 89–94.

22. Andersen P.K., Gill R.D. Cox’s Regression Model for Counting Processes: a Large Sample Study //Ann. Statist. 1982. V. 10. No. 4. P. 1100–1120.

Система Orphus

Loading...
Up