Parametric Analysis of the Sensitivity of a Functional on the Basis of the Non-Classical Model of Optimal Economic Growth

 
PIIS000523100000272-3-1
DOI10.31857/S000523100000272-3
Publication type Article
Status Published
Authors
Affiliation: Rostov State University of Economics (RSUE)
Address: Rostov-on-Don, Russia
Journal nameAvtomatika i Telemekhanika
EditionIssue 7
Pages138-148
Abstract

We study the sensitivity of a functional on the basis of the macroeconomic model. This analysis is a calculation of the derivative with respect to the parameters of the functional characterizing the optimal trajectory. To solve this problem, we apply an approach using conjugate functions and bring the results down to concrete computations. As the model we use a neoclassical model of optimal economic growth and estimate the sensitivity with the growth rate of civilian labor force of national economies in three European countries. Our results can be recommended for analysis and practical use by the relevant authorities. Since the ultimate goal of modeling is to consider feasible alternatives when making decisions, such analysis can be useful.

KeywordsSensitivity, optimal control, single-sector model, economic growth, production function
Received29.09.2018
Publication date29.09.2018
Number of characters799
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 942

Readers community rating: votes 0

1. Tomovich R., Vukobratovich M. Obschaya teoriya chuvstvitel'nosti. M.: Sov. radio, 1972.

2. Rozenvasser E.N., Yusupov R.M. Vklad leningradskikh uchenykh v razvitie teorii chuvstvitel'nosti sistem upravleniya / Tr. SPIIRAN, Moskva, 2013. Vyp. 2. S. 13–41.

3. Ustinov E.A. Sensitivity Analysis in Remote Sensing. N.Y.: Springer, 2015.

4. Cacuci D.G. Sensitivity and Uncertainty Analysis. V. 1. Theory. Boca Raton: Chapman & Hall /CRC, 2003.

5. Intriligator M. Matematicheskie metody optimizatsii i ehkonomicheskaya teoriya. M.: Ajris Press, 2002.

6. Khartman F. Obyknovennye differentsial'nye uravneniya. M.: Mir, 1970.

7. Khog Eh., Choj K., Komkov V. Analiz chuvstvitel'nosti pri proektirovanii konstruktsij. M.: Mir, 1988.

8. Haug E.J., Mani N.K., Krishnaswami P. Design Sensitivity Analysis and Optimization of Dynamically Driven Systems / Computer Aided Analysis and Optimization of Mechanical System Dynamics. Haug E.J. (eds.) Berlin: Springer, 1984. P. 555–635.

9. Barro R.Dzh., Sala-i-Martin Kh. Ehkonomicheskij rost. M.: BINOM. Laboratoriya znanij, 2010.

10. Fedorenko R.P. Priblizhennoe reshenie zadach optimal'nogo upravleniya. M.: Nauka, 1978.

11. Klejner G.B. Proizvodstvennye funktsii: Teoriya, metody, primenenie. M.: Finansy i statistika, 1986.

12. Organisation for Economic Co-operation and Development, Available at: http://stats.oecd.org/ (accessed 04.02.2017).

Система Orphus

Loading...
Up