views: 1810
Readers community rating: votes 0
1. Mohler R.R. Bilinear Control Processes. N.Y.: Academic Press, 1973.
2. Khalil N.K. Nonlinear Systems. N.Y.: Prentice Hall, 2002.
3. Isidori A. Nonlinear Control Systems. London: Springer-Verlag, 1995.
4. Krsti´c M., Kanellakopoulos I., Kokotovic P. Nonlinear and Adaptive Control Design. N.Y.: Wiley, 1995.
5. Emel'yanov S.V., Krischenko A.P. Stabiliziruemost' bilinejnykh sistem kanonicheskogo vida // Dokl. AN. 2012. T. 445. № 6. S. 636–639.
6. Emel'yanov S.V., Korovin S.K., Shepit'ko A.S. Stabilizatsiya bilinejnykh sistem na ploskosti posredstvom postoyannykh i relejnykh upravlenij // Differents. uravneniya. 2000. T. 36. № 8. S. 1021–1028.
7. Ryan E., Buckingham N. On Asymptotically Stabilizing Feedback Control of Bilinear Systems // IEEE Transact. Autom. Control. 1983. V. 28. No. 8. P. 863–864.
8. Chen L.K., Yang X., Mohler R.R. Stability Analysis of Bilinear Systems // IEEE Transact. Autom. Control. 1991. V. 36. No. 11. P. 1310–1315.
9. Fomichev V.V., Shepit'ko A.S. Metod vraschayuschikh funktsij Lyapunova v zadache stabilizatsii dvumernykh bilinejnykh sistem // Differents. uravneniya. 2000. T. 36. № 8. S. 1136–1138.
10. Hu B., Zhai G., Michel A.N. Stabilization of Two-Dimensional Single-Input Bilinear Systems with a Finite Number of Constant Feedback Controllers // Proc. Amer. Control Conf. (ACC 2002). Anchorage, USA, May 2002. V. 3. P. 1874–1879.
11. Celikovsk´y S. On the Global Linearization of Bilinear Systems // Syst. Control Lett. 1990. V. 15. No. 5. P. 433-439.
12. Celikovsk´y S. On the Stabilization of the Homogeneous Bilinear Systems // Syst. Control Lett. 1993. V. 21. No. 6. P. 503–510.
13. Tibken B., Hofer E.P., Sigmund A. The Ellipsoid Method for Systematic Bilinear Observer Design // Proc. 13 IFAC World Congr. San Francisco, USA, June – July 1996. P. 377–382.
14. Korovin S.K., Fomichev V.V. Asimptoticheskie nablyudateli dlya nekotorykh klassov bilinejnykh sistem s linejnym vkhodom // DAN. Teoriya upravleniya. 2004. T. 398. № 1. S. 38–43.
15. Belozyorov V.Y. Design of Linear Feedback for Bilinear Control Systems // Int. J. Appl. Math. Comput. Sci. 2002. V. 11. No. 2. P. 493–511.
16. Belozyorov V.Y. On Stability Cones for Quadratic Systems of Differential Equations // J. Dynam. Control Syst. 2005. V. 11. No. 3. P. 329–351.
17. Amato F., Cosentino C., Merola A. Stabilization of Bilinear Systems via Linear State Feedback Control // IEEE Transact. Circuits Syst. II. Express Briefs. 2009. V. 56. No. 1. P. 76–80.
18. Andrieu V., Tarbouriech S. Global Asymptotic Stabilization for a Class of Bilinear Systems by Hybrid Output Feedback // IEEE Transact. Autom. Control. 2013. V. 58. No. 6. P. 1602–1608.
19. Coutinho D., de Souza C.E. Nonlinear State Feedback Design with a Guaranteed Stability Domain for Locally Stabilizable Unstable Quadratic Systems // IEEE Transact. Circuits Syst. I. Regular Papers. 2012. V. 59. No. 2. P. 360–370.
20. Omran H., Hetel L., Richard J.-P., Lamnabhi-Lagarrigue F. Stability Analysis of Bilinear Systems under Aperiodic Sampled-Data Control // Automatica. 2014. V. 50. No. 4. P. 1288–1295.
21. Kung C.-C., Chen T.-H., Chen W.-C., Su J.-Y. Quasi-Sliding Mode Control for a Class of Multivariable Discrete Time Bilinear Systems // Proc. 2012 IEEE Int. Conf. Syst., Man, Cybernet. (SMC). Seoul, Korea, October 2012. P. 1878–1883.
22. Goka T., Tarn T.J., Zaborszky J. On the Controllability of a Class of Discrete Bilinear Systems // Automatica. 1973. V. 9. No. 5. P. 615–622.
23. Tie L., Lin Y. On Controllability of Two-Dimensional Discrete-Time Bilinear Systems // Int. J. Syst. Sci. 2015. V. 46. No. 10. P. 1741–1751.
24. Athanasopoulos N., Bitsoris G. Constrained Stabilization of Bilinear Discrete-Time Systems Using Polyhedral Lyapunov Functions // Proc. 17 IFAC World Congr. Seoul, Korea, July 6–11, 2008. P. 2502–2507.
25. Athanasopoulos N., Bitsoris G. Stability Analysis and Control of Bilinear DiscreteTime Systems: A Dual Approach // Proc. 18 IFAC World Congr. Milano, Italy, August 28 – September 2, 2011. P. 6443–6448.
26. Tarbouriech S., Queinnec I., Calliero T.R., Peres P.L.D. Control Design for Bilinear Systems with a Guaranteed Region of Stability: An LMI-Based Approach // Proc. 17 Mediterran. Conf. Control Autom. (MED’09). Thessaloniki, Greece, June 2009. P. 809–814.
27. Boyd S., El Ghaoui L., Feron E., Balakrishnan B. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994.
28. Khlebnikov M.V. Quadratic Stabilization of Bilinear Control Systems // Autom. Remote Control. 2016. V. 77. No. 6. P. 980–991.
29. Petersen I.R. A Stabilization Algorithm for a Class of Uncertain Linear Systems // Syst. Control Lett. 1987. V. 8. No. 4. P. 351–357.
30. Khlebnikov M.V., Shcherbakov P.S. Petersen’s Lemma on Matrix Uncertainty and Its Generalization // Autom. Remote Control. 2008. V. 69. No. 11. P. 1932–1945.
31. Khlebnikov M.V. New Generalizations of the Petersen Lemma // Autom. Remote Control. 2014. V. 75. No. 5. P. 917–921.
32. Polyak B.T., Khlebnikov M.V., Scherbakov P.S. Upravlenie linejnymi sistemami pri vneshnikh vozmuscheniyakh: Tekhnika linejnykh matrichnykh neravenstv. M.: LENAND, 2014.
33. Khorn R., Dzhonson Ch. Matrichnyj analiz. M.: Mir, 1989.
34. Grant M., Boyd S. CVX: Matlab Software for Disciplined Convex Programming, version 2.0 beta. http://cvxr.com/cvx, September 2013.