Cybersickness in virtual reality: phenomenology and measurement

 
PIIS020595920005473-6-1
DOI10.31857/S020595920005473-6
Publication type Article
Status Published
Authors
Occupation: User researcher
Affiliation: UserLytics Corp., Foster City, California, USA
Address: United States, Foster City
Occupation: Leading researcher
Affiliation: Psychology Department, Moscow Lomonosov State University
Address: 11 Mokhovaya st.
Journal namePsikhologicheskii zhurnal
EditionVolume 40 issue 4
Pages85-94
Abstract

The article provides an overview of cybersickness, also known as a simulator sickness, or vection. Cybersickness oftentimes accompanies use of virtual or augmented reality systems. Motion sickness and cybersickness similarities as well as distinctions are discussed in the article. Cyberickness symptoms and theories, partly explaining these phenomena are collected and presented. Three theories of cyber sickness are discussed: the theory of sensory conflict, the theory of postural instability and the toxin (evolutionary) theory. The factors that presumably contribute to the emergence of cybersickness are analyzed: technical characteristics of virtual reality systems, the individual characteristics of users, and the task specifics, including multitasking situations. Methods of cybersickness severity evaluation and registering psycho-physiological parameters are discussed. The article describes promising interventions aimed at reducing the likelihood of the cybersickness onset. The article will be followed in the next coming issue of the Journal.

KeywordsVirtual reality, immersion, simulator disorder, vection, motion sickness, cybersickness, metrics, psychophysiological parameters
AcknowledgmentThe study was supported by the Russian Science Foundation, project № 18-18-00365, “Digital socialization in the cultural-historical perspective: intragenerational and intergenerational analysis”, Moscow Lomonosov State University.
Received14.06.2019
Publication date26.06.2019
Number of characters21009
Cite  
100 rub.
When subscribing to an article or issue, the user can download PDF, evaluate the publication or contact the author. Need to register.

Number of purchasers: 3, views: 2431

Readers community rating: votes 0

1. Averbuh N.V. Psihologicheskie aspekty fenomena prisutstvija v virtual'noj srede // Voprosy psihologii. 2010. № 5. P. 105–113. (in Russian)

2. Averbuh N.V., Shherbinin A.A. Fenomen prisutstvija i ego vlijanie na jeffektivnost' reshenija intellektual'nyh zadach v sredah virtual'noj real'nosti // Psihologija. Zhurnal Vysshej shkoly jekonomiki. 2011. V. 8. № 4. P. 102–119. (in Russian)

3. Arhitektura virtual'nyh mirov / Eds. M.B. Ignat'ev, A.V. Nikitin, A.E. Vojskunskij. St. Petersburg: Izd-vo GUAP, 2009. (in Russian)

4. Vojskunskij A.E. Psihologija i Internet. Moscow: Akropol', 2010. (in Russian)

5. Vojskunskij A.E. Koncepcii zavisimosti i prisutstvija primenitel'no k povedeniju v Internete // Medicinskaja psihologija v Rossii. 2015. № 4 (33). URL: http://mprj.ru/archiv_global/2015_4_33/nomer07.php (data obrashhenija: 30.07.2015). (in Russian)

6. Vojskunskij A.E., Men'shikova G.Ja. O primenenii sistem virtual'noj real'nosti v psihologii // Vestnik Moskovskogo universiteta. Serija 14. Psihologija. 2008. № 1. P. 22–36. (in Russian)

7. Efremov S.B. Tip kommunikacij mezhdu voditelem i avtomobilem, osnovannyj na dopolnennoj real'nosti: novyj trend v postroenii intellektual'nyh transportnyh sistem // Sovremennaja zarubezhnaja psihologija. 2017. V. 6. № 1. P. 6–14. (in Russian)

8. Zinchenko Ju.P. Psihologija virtual'noj real'nosti. Moscow: Izd-vo Moskovskogo universiteta, 2011. (in Russian)

9. Zinchenko Ju.P., Men'shikova G.Ja., Bajakovskij Ju.M., Chernorizov A.M., Vojskunskij A.E. Tehnologii virtual'noj real'nosti: metodologicheskie aspekty, dostizhenija i perspektivy // Nacional'nyj psihologicheskij zhurnal. 2010. № 2(4). P. 64–71. (in Russian)

10. Kovalev A.I., Klimova O.A. Diagnostika ustojchivosti vestibuljarnoj funkcii sportsmenov s primeneniem tehnologii virtual'noj real'nosti // Sportivnyj psiholog. 2017. V. 46. № 3. P. 4–9. (in Russian)

11. Kovalev A.I., Men'shikova G.Ja., Klimova O.A., Barabanshhikova V.V. Soderzhanie professional'noj dejatel'nosti kak faktor uspeshnosti primenenija tehnologij virtual'noj real'nosti // Jeksperimental'naja psihologija. 2015. V. 8. № 2. P. 45–59. (in Russian)

12. Fedotov I.A., Kukushkin S.V., Dorovskaja V.A., Antoshkin Ja.A. i-Disorders ― novye vidy psihicheskih rasstrojstv, svjazannye s ispol'zovaniem sovremennyh informacionnyh tehnologij // Omskij psihiatricheskij zhurnal. 2015. № 4(6). P. 16–19. (in Russian)

13. Hant S.R. Inzhenernaja psihologija v kosmonavtike // Chelovecheskij faktor. V. 2. Jergonomicheskie osnovy proektirovanija proizvodstvennoj sredy / Ed. G. Salvendi. Moscow: Mir, 1991. P. 155–178. (in Russian)

14. Ames S.L., Wolffsohn J.S., Mcbrien N.A. The development of a symptom questionnaire for assessing virtual reality viewing using a head-mounted display // Optometry & Vision Science. 2005. V. 82. № 3. Р. 168–176.

15. Balk S.A., Bertola M.A., Inman V.W. Simulator Sickness Questionnaire: Twenty Years Later // Proceedings of the Seventh International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design (June 17–20, 2013, Bolton Landing, New York). Iowa City, IA: Public Policy Center, University of Iowa, 2013. Р. 257–263.

16. Bhandri J., MacNeilage P., Folmer E. Teleoperation without spatial disorientation using optical flow cues // Graphics Interface Conference (Toronto, 8–11 May 2018). 2018. graphicsinterface.org/wp-content/uploads/gi2018-22.pdf

17. Biernacki M.P., Kennedy R.S., Dziuda Ł. Simulator sickness and its measurement with Simulator Sickness Questionnaire (SSQ) // Medycyna Рracy. 2016. V. 67. № 4. Р. 545–555.

18. Bouchard S., Robillard G., Renaud P., Bernier F. Exploring new dimensions in the assessment of virtual reality induced side effects // Journal of computer and information technology. 2011. V. 1. № 3. Р. 20–32.

19. Bruck S., Watters P. The factor structure of cybersickness // Displays. 2011. V. 32. № 4. P. 153–158.

20. Busscher B., de Vliegher D., Ling Y., Brinkman W.P. Physiological measures and self-report to evaluate neutral virtual reality worlds // Journal of CyberTherapy and Rehabilitation. 2011. V. 4. № 1. P. 15–25.

21. Davis S., Nesbitt K., Nalivaiko E. Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters // Proceedings of the 11th Australasian Conference on Interactive Entertainment (27–30 January 2015), Sydney, Australia. 2015. P. 3–14.

22. Dennison M.S., Wisti A.Z., D’Zmura M. Use of physiological signals to predict cybersickness // Displays. 2016. V. 44. P. 42–52.

23. Dong X., Yoshida K., Stoffregen T.A. Control of a virtual ambulation influences body movement and motion sickness // Journal of Experimental Psychology: Applied. 2011 V. 17. № 2. Р. 128–38.

24. Egan D., Brennan S., Barrett J., Qiao Y., Timmerer C., Murray N. An evaluation of Heart Rate and Electrodermal Activity as an Objective QoE Evaluation method for Immersive Virtual Reality Environments // 2016 Eighth International Conference on Quality of Multimedia Experience (6–8 June 2016, Lisbon, Portugal). 2016.

25. Golding J.F. Motion sickness susceptibility // Autonomic Neuroscience. 2006. V. 129. Is. 1–2. P. 67–76.

26. Hettinger L.J., Berbaum K.S., Kennedy R.S., Dunlap W.R., Nolan M.D. Vection and simulator sickness // Military Psychology. 1990. V. 2. № 3. P. 171–181.

27. Hildebrandt J., Schmitz P., Valdez A.C., Kobbelt L., Ziefle M. Get Well Soon! Human Factors’ Influence on Cybersickness After Redirected Walking Exposure in Virtual Reality // Virtual, Augmented and Mixed Reality: Interaction, Navigation, Visualization, Embodiment, and Simulation. 10th Internat. Conference (July 15–20 2018, Las Vegas, USA) Proceedings, Part 1. Lecture Notes in Computer Science, Issue 10909 / Eds. J.Y.C. Chen and ‎G. Fragomeni. Springer Publ., 2018. P. 82–101.

28. Kellogg R., Kennedy R., Graybiel A. Motion sickness symptomatology of labyrinthine defective and normal subjects during zero gravity maneuvers // Aerospace Medicine. 1965. V. 36. № 4. P. 315–318.

29. Kennedy R.S., Lane N.E., Berbaum K.S., Lilienthal M.G. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness // The International Journal of Aviation Psychology. 1993. V. 3. № 3. Р. 203–220.

30. Keshavarz B., Hecht H. Validating an efficient method to quantify motion sickness // Human factors. 2011. V. 53. № 4. P. 415–426.

31. Kim H.G., Baddar W.J., Lim H-T., Jeong H., Ro Y.M. Measurement of exceptional motion in VR video contents for VR sickness assessment using deep convolutional autoencoder // Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology (November 8–10, 2017, Gothenburg, Sweden). 2017.

32. Kim H.K., Park J., Choi Y., Choe M. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment // Applied Ergonomics. 2018. V. 69. P. 66–73.

33. Kim Y.Y., Kim H.J., Kim E.N., Ko H.D., Kim H.T. Characteristic changes in the physiological components of cybersickness // Psychophysiology. 2005. V. 42. № 5. Р. 616–625.

34. Kiryu T., So R.H. Sensation of presence and cybersickness in applications of virtual reality for advanced rehabilitation // Journal of NeuroEngineering and Rehabilitation. 2007. V. 4. № 34.

35. Liu Ch.-L. A study of detecting and combating cybersickness with fuzzy control for the elderly within 3D virtual stores // International Journal of Human-Computer Studies. 2014. V. 72. Is. 12. P. 796–804.

36. Menshikova G.Y., Kovalev A.I., Klimova O.A., Barabanschikova V.V. The application of virtual reality technology to testing resistance to motion sickness // Psychology in Russia: State of the Art. 2017. V. 10. № 3. P. 151–164.

37. Money K.E., Lackner J.R., Cheung R.S.K. The autonomic nervous system and motion sickness // Vestibular Autonomic Regulation / Eds. Yates B.J, Miller A.D. Boca Raton, FL: CRC Press, 1996. P. 147–173.

38. Mousavi M., Hwa Jen Y., Musa S.N.B. A Review on Cybersickness and Usability in Virtual Environments // Advanced Engineering Forum. 2013. V. 10. P. 34–39.

39. Nalivaiko E., Davis S., Blackmore K.L., Vakulin A., Nesbitt K.V. Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time // Physiology and Behavior. 2015. V. 151. P. 583–590.

40. Ohyama S., Nishiike S., Watanabe H., Matsuoka K., Akizuki H., Takeda N., et al. Autonomic responses during motion sickness induced by virtual reality // Auris Nasus Larynx. 2007. V. 34. № 3. P. 303– 306.

41. Pedro A., Le Q.T., Park C.S. Framework for integrating safety into construction methods education through interactive virtual reality // Journal of Professional Issues of Engineering Education and Practice. 2016. V. 142. № 2. Is. 2. P. 04015011.

42. Porcino T., Clua, E., Trevisan D., Vasconcelos C., Valente L. Minimizing cyber sickness in head mounted display systems: Design guidelines and applications // IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH, 2017). 2017. P. 1–11.

43. Reason J.T. Motion sickness adaptation: a neural mismatch model // Journal of the Royal Society of Medicine. 1978. V. 71. № 11. P. 819–829.

44. Rebenitsch L., Owen C. Review on cybersickness in applications and visual displays // Virtual Reality. 2016. V. 20 № 2. P. 101–125.

45. Riccio G.E., Stoffregen T.A. An ecological theory of motion sickness and postural instability // Ecological Psychology. 1991. V. 3. № 3. P. 195–240.

46. Stanney K.M., Kingdon K.S., Graeber D., Kennedy R.S. Human performance in immersive virtual environments: Effects of exposure duration, user control, and scene complexity // Human Performance. 2002. V. 15. № 4. P. 339–366.

47. Treisman M. Motion sickness, an evolutionary hypothesis // Science. 1997. V. 197. P. 493–495.

48. Villard S.J., Flanagan M.B., Albanese G.M., Stoffregen T.A. Postural instability and motion sickness in a virtual moving room // Human factors. 2008. V. 50. № 2. Р. 332–345.

Система Orphus

Loading...
Up