Beraunite and Its Team: the History of Discovery of a New Mineral Eleonorite

 
PIIS0032874X0003327-8-1
DOI10.31857/S0032874X0003327-8
Publication type Article
Status Published
Authors
Affiliation: A.V.Shubnikov Institute of Cristallography, RAS
Address: Russian Federation, Moscow
Affiliation: A.V.Shubnikov Institute of Cristallography, RAS
Address: Russian Federation, Moscow
Journal namePriroda
EditionIssue №12
Pages12-20
Abstract

Many phosphate minerals have iron in their composition. Iron atoms form octahedra which are combined into three-dimensional structures using phosphoric P#tetrahedra. Mostly Fe#octahedra are isolated from each other but in some minerals they can be combined by corners or edges, forming clusters or chains. The most stable groups are linear octahedral trimers. They are complicated by four cornersharing octahedra, so-called “h-clusters”. A lot of various structures of different types are forming from these clusters, and minerals and with different composition of octahedra are included in the structural type of beraunite. The studied by us eleonorite Fe6 3+(PO4)4O(OH)4·6H2O from the Rotläufchen mine (Germany) is among them. Eleonorite is a new “transformational” mineral formed as a result of natural solidstate oxidation of beraunite and is its Fe3+-analogous.

Keywordseleonorite, beraunite, beraunite group, ferriс phosphates, single crystal X-ray analysis, crystal structure, h-cluster
Received11.01.2019
Publication date14.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1735

Readers community rating: votes 0

1. Moore P.B. The basic ferric phosphates: a crystallochemical principle. Science. 1969; 164: 1063–1064.

2. Moore P.B. Crystal chemistry of the basic iron phosphates. American Mineralogist. 1970; 55: 135–169.

3. Redhammer G.J., Tippelt G., Roth G. et al. Structure and Mossbauer spectroscopy of barbosalite Fe2+Fe3+2(PO4)2(OH)2 between 80 K and 300 K. Physics and Chemistry of Minerals. 2000; 27: 419–429.

4. Frondel C. The dufrenite problem. Amer. Miner. 1949; 34: 513–540.

5. Breithaupt A. Vollständiges Handbuch der Mineralogie. Arnoldische Buchhandlung, 1841; 2.

6. Fanfani L., Zanazzi P.F. The crystal structure of beraunite. Acta Cryst. 1967; 22: 173–181.

7. Moore P.B., Kampf A.R. Beraunite: refinement, comparative crystal chemistry, and selected bond valences. Zeit. Krist. 1992; 201: 263–281.

8. Marzoni Fecia di Cossato Y., Orlandi P., Pasero M. Manganese#bearing beraunite from Mangualde, Portugal: mineral data and structure refinement. Can. Miner. 1989; 27: 441–446.

9. Sejkora J., Grey I.E., Kampf A.R. et al. Tvrdýite, Fe2+Fe3+2Al3(PO4)4(OH2)4·2H2O, a new phosphate mineral from Krásno near Hornн Slavkov, Czech Republic. Miner. Mag. 2016; 80: 1077–1088.

10. Chukanov N.V., Pekov I.V., Grey I.E. et al. Zincoberaunite, ZnFe53+(PO4)4(OH)5·2H2O, a new mineral from the Hagendorf South pegmatite, Germany. Miner. Petrol. 2016; 111: 351–357.

11. Chukanov N.V., Aksenov S.M., Rastsvetaeva R.K. et al. Eleonorite, Fe63+(PO4)4O(OH)4·2H2O: validation as a mineral species and new data. Miner. Mag. 2017; 81: 61–76.

12. Aksenov S.M., Chukanov N.V., Göttlicher J. et al. Mn#bearing eleonorite from Hagendorf South pegmatite, Germany: crystal structure and crystal#chemical relationships with other beraunite#type phosphates. Zeit. Krist. 2018; 233(7): 461–477.

13. Nies A. Strengit, ein neues Mineral. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie. 1877; 8–16.

14. Peacor D.R., Dunn P.J., Simmons W.B., Ramik R.A. Ferristrunzite, a new member of the strunzite group, from Blaton, Belgium. Neues Jahrbuch für Mineralogie, Monatshefte. 1987; 433–440.

15. Kolitsch U. The crystal structure of kidwellite and “laubmannite”, two complex fibrous iron phosphates. Miner. Mag. 2004; 68(1): 147–165.

16. Moore P.B., Shen J. An X#ray structural study of cacoxenite, a mineral phosphate. Nature. 1983; 306: 356–358.

Система Orphus

Loading...
Up