Spins in Semiconductor Nanocrystals

 
PIIS0032874X0001880-7-1
DOI10.31857/S0032874X0000887-4
Publication type Article
Status Published
Authors
Occupation: senior researcher of the laboratory of optics of semiconductors and spintronics laboratory
Affiliation: Ioffe Physical-Technical Institute, RAS
Address: Russian Federation, Saint-Petersburg
Affiliation:
Ioffe Physical-Technical Institute, RAS
Technical University of Dortmund
Address: Russian Federation, Saint-Petersburg; Germany
Journal namePriroda
EditionIssue №9
Pages22-31
Abstract

Semiconductor colloidal nanocrystals with characteristic sizes of a few nanometers are important model objects for the investigation basic physical processes under strong size quantization of the electronic states. A variety of their shapes, sizes, chemical compositions and surface properties provides applications in optoelectronics, photovoltaics, biology, and medicine. Their spin properties remain weakly investigated, but already presented experimental and theoretical results confirm that the spin-dependent processes may strongly modify optical and magneto-optical properties of the colloidal nanocrystals and open new fields for their functionalization.

Keywordscolloidal semiconductor nanocrystals, spin-dependent phenomena, magneto-optics, exciton
Received15.10.2018
Publication date15.10.2018
Number of characters676
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1607

Readers community rating: votes 0

1. Reed M.A., Bate R.T., Bradshaw K. et al. Spatial quantization in GaAs—AlGaAs multiple quantum dots. J. Vacuum Science & Technology B: Microelectronics Processing and Phenomena. 1986; 4(1): 358–360.

2. Ekimov A.I., Onyshchenko A.A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Letters. 1981; 34(6): 345–349.

3. Efros Al.L., Efros A.L. Interband absorption of light in a semiconductor sphere. Soviet Physics Semiconductors USSR. 1982; 16(7): 772–775.

4. Ekimov A.I., Efros Al.L., Onushchenko A.A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985; 56(11): 921–924.

5. Rossetti R., Nakahara S., Brus L.E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983; 79(2): 1086–1088.

6. Gross E.F., Karryjew I.A. The optical spectrum of the exciton. Dokl. Akad. Nauk SSSR.1952; 84(3): 471–474. (In Russ.).

7. Gross E.F., Kapliansky A.A. A spectroscopic study of absorption and luminescence of cuprous chloride, introduced into a crystal of rock salt. Optika i Spektroskopiya. 1957; 2(2): 204–209. (In Russ.).

8. Boles M.A., Ling D., Hyeon T. et al. The surface science of nanocrystals. Nature Materials. 2016; 15(2): 141–153.

9. Kovalenko M.V., Manna L., Cabot A. et al. Prospects of nanoscience with nanocrystals. ACS Nano. 2015; 9: 1012–1057.

10. Javaux C., Mahler B., Dubertret B. et al. Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nature Nanotechnology. 2013; 8: 206–212.

11. Liu F., Biadala L., Rodina A.V. et al. Spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanocrystals. Phys. Rev. B. 2013; 88: 035302(1–12).

12. Liu F., Rodina A.V., Yakovlev D.R. et al. Förster energy transfer of dark excitons enhanced by a magnetic field in an ensemble of CdTe colloidal nanocrystals. Phys. Rev. B. 2015; 92: 125403(1–17).

13. Siebers B., Biadala L., Yakovlev D.R. et al. Exciton spin dynamics and photoluminescence polarization of CdSe/CdS dot-in-rod nanocrystals in high magnetic fields. Phys. Rev. B. 2015; 91: 155304(1–17).

14. Rodina A.V., Efros Al.L. Magnetic properties of nonmagnetic nanostructures: dangling bond magnetic polaron in CdSe nanocrystals. Nano Letters. 2015; 15: 4214–4222.

15. Rodina A.V., Efros Al.L. Radiative recombination from dark excitons: Activation mechanisms and polarization properties. Phys. Rev. B. 2016; 93(15): 155427(1–15).

16. Rodina A.V., Efros Al.L. Effect of dielectric confinement on optical properties of colloidal nanostructures. JETP Letters. 2016; 122(3): 554–566.

17. Biadala L., Shornikova E.V., Rodina A.V. et al. Magnetic polaron on dangling-bond spins in CdSe colloidal nanocrystals. Nature Nanotechnology. 2017; 12: 569–574.

18. Feng D., Yakovlev D.R., Pavlov V.V. et al. Dynamic evolution from negative to positive photocharging in colloidal CdS quantum dots. Nano Letters. 2017; 17: 2844–2851.

19. Rice W.D., Liu W., Pinchetti V., Yakovlev D.R. et al. Direct measurements of magnetic polarons in CdMnSe nanocrystals from resonant photoluminescence. Nano Letters. 2017; 17: 3068–3075.

20. Shornikova E.V., Biadala L., Yakovlev D.R. et al. Electron and hole g-factors and spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Nano Letters. 2018; 18: 373–380.

21. Shornikova E.V., Biadala L., Yakovlev D.R. et al. Addressing the exciton fine structure in colloidal nanocrystals: the case of CdSe nanoplatelets. Nanoscale. 2018; 10: 646–656.

22. Rodina A.V., Golovatenko A.A., Shornikova E.V., Yakovlev D.R. Spin physics of excitons in colloidal nanocrystals. Physics of the solid state. 2018; 60(8): 1537–1553.

23. Efros Al.L., Rosen M., Kuno M. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B. 1996; 54(7): 4843–4856.

24. Goupalov S.V., Ivchenko E.L. The fine structure of excitonic levels in CdSe nanocrystals. Physics of the solid state. 2000; 42(11): 2030–2038.

25. Nirmal M., Murray C.B., Bawendi M.G. Fluorescence-line narrowing in CdSe quantum dots: Surface localization of the photogenerated exciton. Phys. Rev. B. 1994; 50(4): 2293–2300.

26. Merkulov I.A., Rodina A.V. Exchange interaction between carriers and magnetic ions in quantum size heterostructures. Introduction to the Physics of Diluted Magnetic Semiconductors. J.Kossut, J.A.Gaj (eds.). Heidelberg, 2010. 3: 65–101.

27. Norris D.J., Efros Al.L., Erwin S.C. Doped Nanocrystals. Science. 2008; 319: 1776–1779.

28. Grabovskis V.J., Dzenis J.J., Ekimov A.I. et al. Photoionization of semiconductor microcrystals in glass. Sov. Phys. Solid State. 1989; 31: 150.

29. Johnston-Halperin E., Awschalom D.D., Crooker S. et al. Spin spectroscopy of dark excitons in CdSe quantum dots to 60 T. Phys. Rev. B. 2001; 63(20): 205309(1–5).

30. Sirenko A.A., Belitsky V.I., Ruf T. et al. Spin-flip and acoustic-phonon Raman scattering in CdS nanocrystals. Phys. Rev. B. 1998; 58(4): 2077–2087.

31. Gupta J. A., Awshalom D.D., Efros Al. L. et al. Spin dynamics in semiconductor nanocrystals. Phys. Rev. B. 2002; 66(12): 25307(1–12).

32. Yakovlev D.R., Ossau W. Magnetic polarons. Introduction to the Physics of Diluted Magnetic Semiconductors. J.Kossut, J.A.Gaj (eds.). Heidelberg, 2010; 221–262.

Система Orphus

Loading...
Up