Application of the system of electrohydrodynamics equations for mathematical modeling of a new method of electro-acoustic transformation

 
PIIS086858860002831-6-1
DOI
Publication type Article
Status Published
Authors
Affiliation: Institute for Analytical Instrumentation RAS
Address: Russian Federation
Journal nameNauchnoe priborostroenie
EditionVolume 28 Issue 4
Pages127-134
Abstract

An analysis of the system of EHD equations in the context of describing the physical processes occurring during the excitation of acoustic energy in an electroacoustic transducer of a new type is carried out. It is revealed that when implementing a converter device, it is necessary to adhere to a number of limitations and recommendations. To avoid excitation of multiple frequencies, it is necessary to apply a uniform electric field, the liquid medium must also be homogeneous and without impurities. The working fluid in the converter must have a low specific conductivity, otherwise it overheats, other parasitic phenomena occur. To increase the level of the applied electric field, it is necessary to increase the electrical strength of the working fluid. The use of mathematical modeling with the help of the system of EHD equations will allow us to optimize the device of an electroacoustic transducer of a new type.

Keywordselectrohydrodynamics, ponderomotive forces, electrodynamics, the Navier-Stokes equation, the equation of conservation of energy, equations of continuity, electric strength of working fluid
Received03.12.2018
Publication date03.12.2018
Number of characters923
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 955

Readers community rating: votes 0

1. Shishov S.V., Andrianov S.A., Dmitriev S.P., Ruchkin D.V. Method of converting electric signals into acoustics oscillations and an electric gas-kinetic transducer. United States Patent N US 8,085,957,B2. Dec. 27, 2011.

2. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part I. The hydrodynamic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 25–35. Doi: 10.18358/np-28-2-i2535. (In Russ.).

3. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part II. The acoustic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 36–44. Doi: 10.18358/np-28-2-i3644. (In Russ.).

4. Prohorov A.M., ed. Fizicheskaya enziklopediya [Physical encyclopedia]. Vol. 2. Moscow, Soviet encyclopedia Publ., 1990. 703 p. (In Russ.).

5. Sivuhin D.V. Obshchij kurs fiziki. T. 3. Elektrichestvo [General course of physics. Vol. 3. Electricity]. Moscow, Fizmatlit Publ., 2004. 656 p. (In Russ.).

6. Newman J. Elektrochimicheskie sistemy [Electrochemical Systems]. Moscow, Mir Publ., 1977. 464 p. (In Russ.).

7. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. VIII. Elektrodinamika sploshnyh sred [Theoretical physics. Vol. VIII. Electrodynamics of continuous environments]. Moscow, Nauka Publ., 1982. 621 p. (In Russ.).

8. Ostroumov G.A. Vzaimodejstvie ehlektricheskih i gidrodinamicheskih polej: fizicheskie osnovy ehlektrogidrodinamiki [Interaction of electric and hydrodynamic fields: physical fundamentals of electrohydrodynamics]. Moscow, Nauka Publ., 1979. 320 p. (In Russ.).

9. Prohorov A.M. ed. Fizicheskaya enziklopediya [Physical encyclopedia]. Vol. 4. Moscow, Soviet encyclopedia Publ., 1994. 703 p. (In Russ.).

Система Orphus

Loading...
Up