Особенности двухфазных течений в трехмерных цифровых моделях пористого пространства природных песчаников

 
Код статьиS056852810001795-5-1
DOI10.31857/S056852810001795-5
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация:
Казанский (Приволжский) федеральный университет
Институт геологии и нефтегазовых технологий
Аффилиация:
Казанский (Приволжский) федеральный университет
Институт геологии и нефтегазовых технологий
Аффилиация:
Казанский (Приволжский) федеральный университет
Институт геологии и нефтегазовых технологий
Название журналаИзвестия Российской академии наук. Механика жидкости и газа
ВыпускНомер 5
Страницы76-91
Аннотация

Представлены результаты численного моделирования процессов двухфазной фильтрации в трехмерных цифровых моделях пористого пространства трех образцов природных песчаников. Расчеты проведены с использованием решеточных уравнений Больцмана и модели градиента цифрового поля в широком диапазоне вариации числа капиллярности и относительной вязкости нагнетаемой и вытесняемой жидкости. Выявлены условия фильтрации с формированием капиллярных пальцев, вязких пальцев и со стабильным фронтом вытеснения.

Ключевые словаматематическое моделирование, микротомография, микронеоднородность пористого пространства, двухфазные течения, число капиллярности, пальцы, дренирование
Источник финансированияРабота выполнена при поддержке гранта рнф (rscf) 15–11–10015.
Получено17.10.2018
Дата публикации24.11.2018
Кол-во символов495
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 374

Оценка читателей: голосов 0

1. Lenormand R., Touboul E., Zarcone C. Numerical models and experiments on immiscible displacements in porous media // J. Fluid Mech. 1988. V. 189. P. 165–187.

2. Liu H., Zhang Y., Valocchi A. J. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network // Phys. Fluids. 2015. V. 27. Is. 5. 052103.

3. Liu H., Valocchi A. J., Werth C., Kang Q., Oostrom M. Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model // Advances in Water Resources. 2014. V. 73. P. 144–158.

4. Tartakovsky A. M., Meakin P. Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics //Advances in Water Resources. 2006. V. 29. P. 1464–1478.

5. Ferrari A., Lunati I. Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy // Advances in Water Resources. 2013. V. 57. P. 19–31.

6. Kazemifar F., Blois G., Kyritsis D. C., Christensen K. Quantifying the flow dynamics of supercritical CO2–water displacement in a 2D porous micromodel using fluorescent microscopy and microscopic PIV // Advances in Water Resources. 2016. Vol. 95. P. 352–368.

7. Барышников Н. А., Беляков Г. В., Турунтаев С. Б. Двухфазные струйные течения в пористых средах // Изв. МЖГ. 2017. № 1. C. 130–139.

8. Ferer M., Ji, C., Bromhal, G.S., Cook, J., Ahmadi G., Smith D. H. Crossover from capillary fingering to viscous fingering for immiscible unstable flow: Experiment and modeling // Phys.Rev. E. Statistical, Nonlinear, and Soft Matter Phys. 2004. V. 70. 016303.

9. Tsuji T., Jiang F., Christensen K. T. Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone // Advances in Water Resources. 2016. V. 95. P. 3–15.

10. Jiang F. Tsuji T. Hu C. Elucidating the Role of Interfacial Tension for Hydrological Properties of Two-Phase Flow in Natural Sandstone by an Improved Lattice Boltzmann Method // Transport in Porous Media. 2014. V. 104. P. 205–229.

11. Leclaire S., Parmigiani A., Malaspinas O., Chopard B., Latt J. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media // Phys. Rev. E. 2017. V. 95. 033306.

12. Schluter S., Berg S., Rucker M., Armstrong R.T, Vogel H.-J., Hilfer R., Wildenschild D. Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media // Water Resources Research. 2016. V. 52. P. 2194–2205.

13. Berg S., Ott H., Klapp S., Schwing A., Neiteler R., Brussee N., Makurat A., Leu L., Enzmann F., Schwarz J.-O., Kersten M., Irvine S., Stampanoni M. Real-time 3D imaging of Haines jumps in porous media flow // Proc. National Academy of Sciences of the USA. 2013. V. 10. P. 3755–3759.

14. Mokso R., Marone F., Haberthür D., Schittny J. C., Mikuljan G., Isenegger A., Stampanoni M. Following dynamic processes by X‑ray tomographic microscopy, with sub-second temporal resolution // AIP Conf. Proc. 2011. P. 38–41.

15. Mehravaran M., Hannani S. K. Simulation of incompressible two-phase flows with large density differences employing lattice Boltzmann and level set methods // Comput. Methods Appl. Mech. Engrg. 2008. № 198. P. 223–233.

16. Raeini A. Q., Blunt M., Bijeljic B. Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method // J. Comput. Phys. 2012. № 231. P. 5653–5668.

17. Badalassi V. E., Ceniceros H. D., Banerjee S. Computation of multiphase systems with phase field models // J. Comput. Phys. 2003. № 190. P. 371–397.

18. Raeini A. Q., Blunt M., Bijeljic B. Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces // Advances in Water Resources. 2014. № 74. P. 116–126.

19. Succi S. The Lattice Boltzmann equation for fluid dynamics and beyond. Oxford: Oxford Clarendon, 2001. 299 p.

20. Shan X., Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components // Phys. Rev. 1993. № 3. P. 1815–1819.

21. Huang H., Huang J.-J., Lu X.-Y. Study of immiscible displacements in porous media using a colorgradient-based multiphase lattice Boltzmann method // Computers & Fluids. 2014. № 93. P. 164–172.

22. Zacharoudiou I., Boek E. S. Capillary filling and Haines jump dynamics using free energy Lattice Boltzmann simulations // Advances in Water Resources. 2016. V. 92. P. 43–56.

23. Aslan E., Taymaz I., Benim A. C. Investigation of the Lattice Boltzmann SRT and MRT Stability for Lid Driven Cavity Flow // Int. J. Materials, Mechanics and Manufacturing. 2014. V. 2. № 4. P. 317–324.

24. Leclaire, M. Reggio, J.-Y. Trépanier. Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model // Appl. Math. Modelling. 2012. № 36. P. 2237–2252.

25. Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model // Phys. Fluids. 1997. V.9. P. 1591–1598.

26. Reis T., Phillips T. N. Lattice Boltzmann model for simulating immiscible two-phase flows // J. Phys. A: Math. Theoretical. 2007. V.40. P. 4033–4053.

27. Huang J., Xiao F., Yin X. Lattice Boltzmann simulation of pressure-driven two-phase flows in capillary tube and porous medium // Computers & Fluids. 2014. № 100. P. 164–172.

28. Iassonov P., Gebrenegus T., Tuller M. Segmentation of X‑ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures // Water Resources Research. 2009. V.45. Is. 9. P. 1–12.

29. Mostaghimi P, Blunt M. J., Bijeljic B. Computations of Absolute Permeability on Micro-CT Images // Mathematical Geosciences. 2013. V. 45. P. 103–125.

30. Zakirov T. R., Galeev A. A., Korolev E. A., Statsenko E. O. Flow properties of sandstone and carbonate rocks by X‑ray computed tomography // Current Science. 2016. V. 110. Is. 11. P. 2142–2147.

31. Mu Y., Sungkorn R., Toelke J. Identifying the representative flow unit for capillary dominated two-phase flow in porous media using morphology-based pore-scale modeling // Advances in Water Resources. 2016. V. 95. P. 16–28.

32. Jackson S. J., Power H., Giddings D. Immiscible thermo-viscous fingering in Hele-Shaw cells // Computers and Fluids. 2017. V. 156. P. 621–641.

Система Orphus

Загрузка...
Вверх