Фокусировка ударной волны при взаимодействии с локальной областью газа повышенной плотности

 
Код статьиS056852810002306-7-1
DOI10.31857/S056852810002306-7
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация: МГУ им. М. В. Ломоносова
Адрес: Российская Федерация
Аффилиация: МГУ им. М. В. Ломоносова
Адрес: Российская Федерация
Аффилиация: МГУ им. М. В. Ломоносова
Адрес: Российская Федерация
Название журналаИзвестия Российской академии наук. Механика жидкости и газа
ВыпускНомер 6
Страницы116-122
Аннотация

На основе численного решения уравнений Эйлера моделируется взаимодействие ударной волны с круглой областью газа повышенной плотности в двумерной плоской и осесимметричной постановках. Плоская постановка задачи описывает взаимодействие волны с тяжелым газовым цилиндром, а осесимметричная — с тяжелым газовым пузырем. Описан процесс преломления и фокусировки падающей ударной волны, включая два различных режима взаимодействия — внешний и внутренний. Обнаружены три последовательных пиковых значения давления газа на оси (плоскости) симметрии, достигающиеся как снаружи, так и внутри деформированной неоднородности. Определена зависимость пиковых значений давления от начальной плотности газа в неоднородности для двух различных чисел Маха и показано, что в плоском и в цилиндрическом случаях наибольшее давление достигается в различных режимах.

Ключевые словаударная волна, неоднородность, газовый пузырь, фокусировка, кумуляция
Получено15.12.2018
Дата публикации15.12.2018
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 957

Оценка читателей: голосов 0

1. Haas J. F., Sturtevant B. Interaction of weak shock waves with cylindrical and spherical inhomogeneities // J. Fluid Mechanics. 1987. V. 181. P. 41–76.

2. Samtaney R., Zabusky N. J. Circulation deposition on shockaccelerated planar and curved density-stratified interfaces: Models and scaling laws // J. Fluid Mechanics. 1994. V. 269. P. 45–78.

3. Picone J. M., Boris J. P. Vorticity generation by shock propagation through bubbles in a gas // J. Fluid Mechanics. 1988. V. 189. P. 23–51.

4. Ranjan D., Oakley J., Bonazza R. Shock-bubble interactions // Annual Review of Fl. Mech. 2011. V. 43. № 1. P. 117–140.

5. Haehn N., Ranjan D., Weber C., Oakley J., Rothamer D., Bonazza R. Reacting shock bubble interaction // Combustion and Flame. 2012. V. 159. № 3. P. 1339–1350.

6. Diegelmann F., Hickel S., Adams N. A. Three-dimensional reacting shock-bubble interaction // Combustion and Flame. 2017. V. 181. P. 300–314.

7. Ray J., Samtaney R., Zabusky N. J. Shock interactions with heavy gaseous elliptic cylinders: Two leeward-side shock competition modes and a heuristic model for interfacial circulation deposition at early times // Phys. Fluids. 2000. V. 12. № 3. P. 707–716.

8. Georgievskiy P. Y., Levin V. A., Sutyrin O. G. Interaction of a shock with elliptical gas bubbles // Shock Waves. 2015. V. 25. № 4. P. 357–369.

9. Zhang W., Zou L., Zheng X., Wang B. Numerical study on the interaction of a weak shock wave with an elliptic gas cylinder // Shock Waves. 2018. https://doi.org/10.1007/s00193-018-0828-y. P. 1–12.

10. Liu X. D., Osher S., Chan T. Weighted essentially non-oscillatory schemes // J. Comput. Phys. 1994. V. 115. № 1. P. 200–212.

11. Sanders R., Morano E., Druguet M. C. Multidimensional dissipation for upwind schemes: Stability and applications to gas dynamics // J. Comput. Phys. 1998. V. 145. № 2. P. 511–537.

Система Orphus

Загрузка...
Вверх