Modeling of branched pipeline systems

 
PIIS023408790001924-0-1
DOI10.31857/S023408790001924-0
Publication type Article
Status Published
Authors
Affiliation: Russian Federal Nuclear Center (FSUE «RFNC – VNIIEF»)
Address: Russian Federation
Affiliation: Russian Federal Nuclear Center (FSUE «RFNC – VNIIEF»)
Address: Russian Federation
Affiliation: Russian Federal Nuclear Center (FSUE «RFNC – VNIIEF»)
Address: Russian Federation
Affiliation: Russian Federal Nuclear Center (FSUE «RFNC – VNIIEF»)
Address: Russian Federation
Affiliation: Federal State Budgetary Educational Institution of Higher Education «Moscow Aviation Institute»
Address: Russian Federation
Affiliation: Federal State Budgetary Educational Institution of Higher Education «Moscow Aviation Institute»
Address: Russian Federation
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 10
Pages123-138
Abstract

This paper examines classical approaches and variety of existing software solutions for pipeline systems modeling. There is pipeline systems modeling method, which is universal for all types of hydraulic elements and is aimed at branched multi-element pipeline systems calculation. Simulated pipeline system can have arbitrary topology and isolatedcircuits. Realization of hydraulic elements modeling and their application within the software product «FlowDesigner» are described. 

Keywordsmodeling, pipelines, hydraulic elements, FlowDesigner
AcknowledgmentThe work was supported by a grant from the President of the Russian Federation for state support of scientific research of young Russian doctors of science MD-4874.2018.9, state support of leading scientific schools of the Russian Federation NSh-2685.2018.5, and also with financial support from the Russian Foundation for Basic Research - project No. 16- 01-00267.
Received08.11.2018
Publication date14.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1717

Readers community rating: votes 0

1. M.A. Pogosyan, E.P. Savel'evskikh, R.M. Shagaliev, A.S. Kozelkov, D.Yu. Strelets, A.A. Ryabov, A.V. Kornev, Yu.N. Deryugin, V.F. Spiridonov, K.V. Tsiberev. Primenenie otechestvennykh superkomp'yuternykh tekhnologij dlya sozdaniya perspektivnykh obraztsov aviatsionnoj tekhniki // Zhurnal VANT, ser. Mat. model. fizich. protsessov, 2013, № 2, c.3-17;

2. E.P. Savel'evskikh, R.M. Shagaliev, D.Yu. Strelets, A.S. Kozelkov, A.V. Kornev. Primenenie superkomp'yuternykh tekhnologij dlya resheniya aktual'nykh zadach proektirovaniya novykh obraztsov aviatsionnoj tekhniki // Nauchno-tekhnicheskij zhurnal «Nauka i tekhnologii v promyshlennosti», 2014, №1-2, c.71-82.

3. A.S. Kozelkov, V.V. Kurulin, S.V. Lashkin, R.M. Shagaliev, A.V. Yalozo. Issledovanie potentsiala superkomp'yuterov dlya masshtabiruemogo chislennogo modelirovaniya zadach gidrodinamiki v industrial'nykh prilozheniyakh // Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki, 2016, t.56, №8, s.1524-1535;

4. A.R.D. Thorley, C.H. Tiley. Unsteady and transient flow of compressible fluids in pipelines – a review of theoretical and some experimental studies // Heat and Fluid Flow, 1978, v.8, №1, p.3-15.

5. A.P. Merenkov, V.Ya. Khasilev. Teoriya gidravlicheskikh tsepej. M.: Nauka, 1985, 279 s.

6. I.E. Idel'chik. Spravochnik po gidravlicheskim soprotivleniyam. M.: Mashinostroenie, 1992, 672 s.

7. V.E. Seleznev, V.V. Aleshin, S.N. Pryalov. Matematicheskoe modelirovanie truboprovodnykh setej i kanalov. Metody, modeli i algoritmy. M.: MAKS Press, 2007, 695s.

8. S.C. Pang, M.A. Kalam, H.H. Masjuki, M.A. Hazrat. A review on air flow and coolant flow circuit in vehicles’ cooling system // International Journal of Heat and Mass Transfer, 2012, №55, p.6295-6306.

9. P. Heesung. Numerical assessment of liquid cooling system for power electronics in fuel cell electric vehicles // International Journal of Heat and Mass Transfer, 2014, №73, p.511-520.

10. Pengyu Lu, Qing Gao, Yan Wang. The simulation methods based on 1D/3D collaborative computing for the vehicle integrated thermal management // Applied Thermal Engineering, 2016, №104, p.42-53.

11. V.P. Vizgin. Razvitie vzaimosvyazi printsipov invariantnosti s zakonami sokhraneniya v klassicheskoj fizike. M.: Nauka, 1972, 240 s.

12. Programma "Gidrosistema" [Ehlektronnyj resurs] URL: http://www.truboprovod.ru/cad/soft/hst.shtml;

13. E. Todini, S. Pilati. A gradient method for the solution of looped pipe networks // Comput. Appl. Water Supply, 1988, №1, p.1-20.

14. M.A.H. Abdy Sayyed, R. Gupta, T.T. Tanyimboh. Modelling Pressure Deficient Water Distribution Networks in EPANET // Procedia Engineering, 2014, v.89, p.626–631.

15. Haestad methods // World Pumps, 1999, №388, p.52.

16. B. Eriksson, P. Nordin, P. Krus. Hopsan NG, A C++ Implementation using the TLM Simulation Technique. In: Proceedings of The 51st Conference on Simulation and Modelling, Oulu, Finland, 2010.

17. D.M. Auslander. Distributed system simulation with bilateral delay-line models // Journal of Basic Engineering, 1968, №90, p.195–200.

18. Programma "FlowMaster" [Ehlektronnyj resurs] URL: https://www.mentor.com/products/mechanical/flowmaster/1d-3d-cfd/

19. A.B. Skvortsov, D.S. Sarychev. Modelirovanie ehlementov truboprovodov // Izv. vuzov. Fizika, 2002, №2, s.57-63;

20. A.S. Kozelkov, Yu.N. Deryugin, S.V. Lashkin, D.P. Silaev, P.G. Simonov, E.S. Tyatyushkina. Realizatsiya metoda rascheta vyazkoj neszhimaemoj zhidkosti s ispol'zovaniem mnogosetochnogo metoda na osnove algoritma SIMPLE v pakete programm LOGOS // VANT. Matematicheskoe modelirovanie fizicheskikh protsessov, 2013, №4, s.44-56;

21. K.N. Volkov, Yu.N. Deryugin, V.N. Emel'yanov, A.G. Karpenko, A.S. Kozelkov, I.V. Teterina. Metody uskoreniya gazodinamicheskikh raschetov na nestrukturirovannykh setkakh. – M.: Fizmatlit, 2013, 536 s.

22. E. Allen, J. Burns, D. Gilliam, J. Hill, V. Shubov. The Impact of Finite Precision Arithmetic and Sensitivity on the Numerical Solution of Part ial Different ial Equations // Mathematical and Computer Modelling, 2002, №35, p.1165-1196.

23. A.V. Levitin. Algoritmy. Vvedenie v razrabotku i analiz.  M.: Vil'yams, 2006, 576s

24. S. Lipschutz, M. Lipson. Schaum’s Outlines: Linear Algebra // Tata McGraw-hill edition, 2001, p.69-80.

25. S. Ates. Hydraulic modelling of closed pipes in loop equations of water distribution networks // Applied Mathematical Modelling, 2016, №40, p.966–983.

26. B.E. Larock, R.W. Jeppson, G.Z. Watters. Hydraulics of Pipeline Systems. CRC Press, 2000, 522p.

27. R.W. Jeppson. Steady Flow Analysis of Pipe Networks: An Instructional Manual. Utah State University Press, 1974, 88p.

Система Orphus

Loading...
Up