On a computational technique for simulation of scramjet combustor by means of OpenFOAM

 
PIIS023408790001171-2-1
DOI10.31857/S023408790001171-2
Publication type Article
Status Published
Authors
Affiliation: Keldysh Institute of Applied Mathematics of RAS
Address: Russian Federation, Moscow
Affiliation: Keldysh Institute of Applied Mathematics of RAS
Address: Russian Federation, Moscow
Affiliation: Keldysh Institute of Applied Mathematics of RAS
Address: Russian Federation, Moscow
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 8
Pages32-50
Abstract

A methodology for numerical simulation of flows in the scramjet combustor provides. The approach is based on the numerical solution of the Navier-Stokes system of the reacting flows of multicomponent fluid mixtures. The dynamics of combustion processes is studied depending on the coefficient of oxidizer excess and the technology is developed for numerical simulations on a multiprocessor supercomputer K-100 by means of OpenFOAM.

Keywordsnumerical simulation, multicomponent flows, scramjet combustor, OpenFOAM
Received25.09.2018
Publication date04.10.2018
Number of characters389
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 2103

Readers community rating: votes 0

1. O.V. Voloshchenko, S.A. Zosimov, A.A. Nikolaev. Eksperimentalnoe issledovanie protsessa goreniia zhidkogo uglevodorodnogo topliva v ploskom kanale pri sverkhzvukovoi skorosti potoka na vkhode. V sb. “Modeli I metody aerodinamiki”. Materialy I i II Mezhdunarodnykhshkol-seminarov. M.: MNTSMO, 2002, s.75.

2. E.V. Piotrovich, V.N. Sermanov, V.N. Ostras, O.V. Voloshchenko, S.A. Zosimov, A.F.Chevagin, V.V. Vlasenko, E.A. Meshcheriakov. Issledovanie problem goreniia zhidkogo uglevodorodnogo topliva v kanalakh. V sb. “Modeli i metody aerodinamiki”. Materialy I i II Mezhdunarodnykh shkol-seminarov. M.: MNTSMO, 2002, s.102.

3. V.V. Vlasenko, A.A. Shiriaeva. Raschety techeniia v modelnoi vysokoskorostnoi kamere sgoraniia s ispolzovaniem razlichnykh modelei khimicheskoi kinetiki // Gorenie i vzryv. 2015, t.8, № 1, s.116–125.

4. S.M. Frolov, A.E. Zangiev, I.V. Semenov, V.V. Vlasenko, O.V. Voloshchenko, A.A. Nikolaev, A.A. Shiriaeva. Modelirovanie techeniia v vysokoskorostnoi kamere sgoraniia v trekhmernoi i dvumernoi postanovke // Gorenie i vzryv. 2015, т.8, № 1, с.126–135.

5. I.G. Gudich, V.V. Vlasenko, V.T.Zhukov, K.V. Manukovskii, N.D. Novikova, Iu.G. Rykov, O.B. Feodoritova. O raschetakh modelnoi vysokoskorostnoi kamery sgoraniia // Gorenie i vzryv, 2016, t.9, № 3, s.57–65.

6. I.G. Gudich, V.T. Zhukov, K.V. Manukovskii, N.D. Novikova, Iu.G. Rykov, O.B. Feodoritova.Chislennoe modelirovanie vysokoskorostnoi kamery sgoraniia s ispolzovaniem paketa OpenFOAM. – М.: IPM im. M.V. Keldysha RAN, 2016, preprint № 10, 32с.

7. http://www.openfoam.com

8. Gibridnyi vychislitelnyi klaster K-100. URL: http://www.kiam.ru/MVS/resourses/k100.html.

9. T. Poinsot, D. Veynante. Theoretical and numerical combustion. Edwards, 3rd Edition, 2011.

10. F.R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA-Journal, 1994, v.32, No. 8, p.269-289.

11. W. Vieser, T. Esch, F. Menter. Heat transfer predictions using advanced two-equation turbulence models. // CFX Validation Report 10/0602, AEA Technology, 2002, p.1-69.

12. J.O. Hirschfelder. Heat Conductivity in Polyatomic or Electronically Excited Gases. II / J. of Chemical Physics, 1957, v.26, № 2, p.282–285, doi: http://dx.doi.org/10.1063/ 1.1743285.

13. Termodinamicheskie svoistva individualnykh veshchestv. Pod red. V.P.Glushko. V 6 tomakh. – М.: Nauka. 1978–2004.

14. V.Ya. Basevich, S.M. Frolov. Globalnye kineticheskie mekhanismy dlia modelirovaniia mnogostadiinogo samovosplameneniia uglevodorodov v reagiruiushchikh techeniiakh // Khimicheskaia fizika, 2006, t.25, № 6, s.54–62.

15. F. Moukalled, L. Mangan, M. Darwish. The finite volume method in computational Fluid Dynamics. An Advanced Introduction with OpenFOAM and Matlab. Springer. 2015.

16. T. Maric, J. Hopken, K. Mooney. The OpenFOAM technology primer. www.sourceflux.de/book, 2014.

17. V.T. Zhukov, K.V. Manukovskii, N.D. Novikova, Iu.G. Rykov, O.B. Feodoritova. Issledovanie kartiny techeniia v modelnom trakte dvigatelia vysokoskorostnogo letatelnogo apparata. М.: IPM im. M.V. Keldysha RAN, 2015, preprint № 5, 23 с.

18. V.T. Zhukov, K.V. Manukovskii, N.D. Novikova, Iu.G. Rykov, O.B. Feodoritova. Raschet, analiz i vizualizatsiia techeniia v modelnom trakte dvigatelia vysokoskorostnogo letatelnogo apparata // Nauchnaia vizualizatsiia, 2015, t.7, № 1, s.78–95.

19. I.G. Gudich, V.T. Zhukov, K.V. Manukovskii, N.D. Novikova, Iu.G. Rykov, O.B. Feodoritova. Chislennoe modelirovanie i vizualizatsiia techenii s goreniem v vysokoskorostnoi kamere sgoraniia // Nauchnaia vizualizatsiia, 2016, t.8, № 4, s.104–127.

20. C.K. Westbrook, F.L. Dryer. Chemical kinetic modeling of hydrocarbon combustion // Prog. Energy Combust. Sci, 1984, v.10, № 1, p.1–57.

21. A.E. Zangiev, V.S. Ivanov, S.N. Medvedev, S.M. Frolov, F.S. Frolov, I.V. Semenov, V.V. Vlasenko. Vliianie turbulentnosti na razvitie techeniia v vysokoskorostnoi kamere sgoraniia // Gorenie i vzryv, 2016, t.9, № 3, s.66-79.

22. V.V. Vlasenko, O.V. Voloshchenko, A.A. Nikolaev. Razvitie techeniia v vysokoskorostnoi kamere sgoraniia pri raznykh znacheniiakh koeffitsienta izbytka vozdukha // Gorenie i vzryv, 2016, t.9, № 3, s.47-56.

Система Orphus

Loading...
Up