Cyanobacteria Bloom in the Sea of Azov According to Landsat Data

 
PIIS020596140003368-5-1
DOI10.31857/S020596140003368-5
Publication type Article
Status Published
Authors
Affiliation: Marine Hydrophysical Institute RAS
Address: Russian Federation
Affiliation: Marine Hydrophysical Institute
Address: Russian Federation
Affiliation: Marine Hydrophysical Institute RAS
Address: Russian Federation
Affiliation: Marine Hydrophysical Institute RAS
Address: Russian Federation
Affiliation: Marine Hydrophysical Institute RAS
Address: Russian Federation
Journal nameIssledovanie Zemli iz kosmosa
EditionIssue 6
Pages52-64
Abstract

The paper explores the spatio-temporal features of cyanobacterial blooms in the Sea of Azov based on Landsat satellite data from 1999 to 2016. The strongest blooms were observed in 1999, 2006–2009, when cyanobacteria occupied the entire central part of the Sea of Azov. In these years peak blooms occurred in August-September. In 2006, the penetration of cyanobacteria from the Sea of Azov to the Black Sea through the Kerch Strait was observed. The longest and most extensive blooms of cyanobacteria are noted in Taganrog Bay, which is associated with its shallow water and the entry of nutrients with the Don River fl ow. Here, bloom takes place from February to November. Local accumulations of cyanobacteria are observed along the eastern shore of the Azov Sea, in the runoff of the Kuban and Protoka rivers, in the Akhtarskiy estuary and in the Temryuk Bay. Cyanobacterial blooms are least common near the north-west coast. Landsat data show that in the summer, cyanobacteria spread from the Taganrog Gulf to the south or west. From the mouth of the Kuban River, cyanobacteria move north. Analysis of numerical calculations using the Nemo model has shown that such distribution is associated with the northern currents that occur in the southern part of the sea in the summer, which may be due to the infl uence of the river fl ow. Maps of probability distribution of cyanobacterial observation were obtained and estimates of the seasonal variability of the area covered by blooming cyanobacteria according to Landsat data are given. In the Azov Sea, blooming peaks in July-August, while reaching its minimum in winter from November to February.

KeywordsLandsat, Sea of Azov, cyanobacteria
AcknowledgmentThe work on numerical modeling of currents in the Azov Sea basin was supported by the program of the Presidium of the Russian Academy of Sciences No. 1.2.50 “Development of methods and means of operational oceanology for studying the variability of the fields of the Black Sea”.
Received27.12.2018
Publication date27.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1257

Readers community rating: votes 0

1. Aleksandrov B. G., Teren'ko L. M., Nesterova D. A. Pervyj sluchaj tsveteniya vody v Chernom more vodorosl'yu Nodularia spumigena Mert. ex Bornet et Flahault (Cyanoprokaryota) //Al'gologiya. 2012. № 22. № 2. S. 152–165.

2. Aleskerova A.A, Kubryakov A. A., Goryachkin Yu. N., Stanichnyj S. V. Rasprostranenie vod iz Kerchenskogo proliva v Chernoe more // Morsk. gidrofiz. zhurn. 2017. № 6. S. 53–64. DOI: 10.22449/0233–7584–2017–6–53–64

3. Vershinin A. O., Orlova T. Yu. Toksichnye i vrednye vodorosli v pribrezhnykh vodakh Rossii // Okeanologiya. 2008. T. 48. № 4. S. 568–582.

4. Il'in Yu. P., Fomin V. V., D'yakov N. N., Gorbach S. B. Gidrometeorologicheskie usloviya morej Ukrainy. T. 1. Azovskoe more. Sevastopol': EhKOSI-Gidrofizika, 2009. S. 400.

5. Karabashev G. S., Evdoshenko M. A. Spektral'nye priznaki tsveteniya tsianobakterij v Baltijskom more po dannym skanera MODIS // Sovr. probl. dist. Zondir. Zemli iz kosmosa. 2015. T. 12. № 3. S. 158.

6. Kubryakov A. A., Mizyuk A. I., Puzina O. S., Senderov M. V. Trekhmernaya identifikatsiya sinopticheskikh vikhrej Chernogo morya po raschetam chislennoj modeli NEMO // Morsk. gidrofiz. zhurn. 2018. № 1.

7. Lavrova O. Yu., Kostyanoj A. G., Lebedev S. A., Mityagina M. I., Ginzburg A. I., Sheremet N. A. Kompleksnyj sputnikovyj monitoring morej Rossii. M.: IKI RAN, 2011. S. 480.

8. Lavrova O. Yu., Mityagina M. I. Osobennosti proyavleniya na sputnikovykh izobrazheniyakh gidrodinamicheskikh protsessov v oblastyakh intensivnogo tsveteniya fitoplanktona // Issled. Zemli iz kosmosa. 2016. № 1–2. S. 145–145.

9. Luzhnyak O. L. Razvitie fitoplanktona Taganrogskogo zaliva v vesenne-letnij period posle isklyuchitel'no teploj zimy 2006/2007 gg. // Izv. vyssh. uch. zav. Severo-Kavkazskij region. Estestvennye nauki. 2011. № 1. S. 67–71.

10. Lyubartseva S. P., Suetin V. S., Korolev S. N. Otsenka izmenenij ehkologicheskogo sostoyaniya Azovskogo morya po dannym nablyudenij iz kosmosa // Dopovіdі NAN Ukraїni. 2011. № 3. S. 124–128.

11. Makarevich P. R., Larionov V. V. Osobennosti stroeniya fitoplanktonnykh soobschestv v zonakh gradientov solenosti bassejna Azovskogo morya // Al'gologiya. 2006. T. 16. № 2. S. 216–226.

12. Matishov G. G., Fushtej T. V. K probleme vredonosnykh «tsvetenij vody» v Azovskom more // Ehlektr. zhurn. «Issledovano v Rossii». 2003. S. 213–225.

13. Matishov G. G., Matishov D. G., Stepan'yan O. V., Aksenov D. S. Kompleksnye issledovaniya Azovskogo, Chernogo i Kaspijskogo morej na nauchno-issledovatel'skom sudne «Deneb» v 2007 g. // Okeanologiya. 2009. T. 49. № 2. S. 313–318.

14. Mizyuk A. I., Senderov M. V., Korotae, G.K., Sarkisyan A. S. Osobennosti gorizontal'noj izmenchivosti temperatury poverkhnosti v zapadnoj chasti Chernogo morya po rezul'tatam modelirovaniya s vysokim prostranstvennym razresheniem. // Izv. RAN. Fizika atmosfery i okeana. 2016. № 52(5). S. 639.

15. Nikitina A. V. Chislennoe reshenie zadachi dinamiki toksichnykh vodoroslej v Taganrogskom zalive // Izv. Yuzhnogo fed. un-ta. Tekhnich. nauki. 2010. T. 107. № 6. S. 113–116.

16. Puzina O. S., Mizyuk A. I. Sravnenie parametrizatsij vertikal'nogo turbulentnogo peremeshivaniya pri modelirovanii tsirkulyatsii Chernogo morya // Tez. dokl. nauch. konf. «Morya Rossii: nauka, bezopasnost', resursy». Sevastopol': 3–7 oktyabrya, 2017. S. 213–214.

17. Selifonova Zh. P. Funktsionirovanie ehkosistemy Azovskogo morya // Biol. vnutr. vod. 2008. № 3. S. 3–7.

18. Blondeau-Patissier D., Gower J. F., Dekke A. G., Phinn S. R., Brando V. E. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans // Progr. in oceanogr. 2014. T. 123. P. 123–144.

19. Deea D. P., Uppalaa S. M., Simmonsa A. J., Berrisforda P., Polia P., Kobayashib S., Andraec U., Balmasedaa M. A., Balsamoa G., Bauera P., Bechtolda P., Beljaarsa A. C.M., van de Bergd L., Bidlota J., Bormanna N., Delsola C., Dragania R., Fuentesa M., Geera A. J., Haimbergere L., Healya S.B., Hersbacha H., Holm E. V., Isaksena L., Kallberg P., Kohler M., Matricardia M., McNallya A. P., Monge-Sanzf B. M., Morcrettea J.- J., Parkg B.- K., Peubeya C., de Rosnaya P., Tavolatoe C., Thepaut J. N., Vitart F. The ERA-Interim reanalysis: confi guration and performance of the data assimilation system // Q.J.R. Meteorol. Soc. 2011 V. 137–656. P. 553–597.

20. Gitelson A. A., Gao B. C., Li R. R., Berdnikov S., Saprygin V. Estimation of chlorophyll-a concentration in productive turbid waters using a Hyperspectral Imager for the Coastal Ocean – the Azov Sea case study // Environm. Res. Lett. 2011. T. 6. № 2. P. 024023.

21. Kahru M., Savchuk O. P., Elmgren R. Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability // Marine Ecol. Progr. Ser. 2007. T. 343. P. 15–23.

22. Kutser T., Metsamaa L., Strombeck N., Vahtmae E. Monitoring cyanobacterial blooms by satellite remote sensing // Estuarine, Coastal and Shelf Sci. 2006. T. 67. № 1–2. P. 303–312.

23. Lavrova O. Y., Mityagina M. I. Manifestation specifics of hydrodynamic processes in satellite images of intense phytoplankton bloom areas // Izv. Atm. and Oc. Phys. 2016. T. 52. № 9. P. 974–987.

24. Madec G. NEMO Ocean Engine. Note du Pole de modelisation. Techn. Rep. France: Institut Pierre-Simon Laplace, 2008. № 27. ISSN № 1288–1619.

25. Moses W. J., Gitelson A. A., Berdnikov S., Povazhnyy V. Satellite estimation of chlorophyll-A a concentration using the red and NIR bands of MERIS – The Azov sea case study // IEEE Geosci. and Rem. Sens. Lett. 2009. T. 6. № 4. P. 845–849.

26. Selifonova Z. P. The role of zooplankton in the functioning of the Taganrog Gulf ecosystem in the Sea of Azov // Inland Water Biol. 2010. T. 3. № 4. P. 335–343.

27. Yankovsky A. E., Chapman D. C. A simple theory for the fate of buoyant coastal discharges // J. Phys. oceanogr. 1997. T. 27. № 7. P. 1386–1401.

Система Orphus

Loading...
Up